7,540 research outputs found

    Electron beam crosslinked natural rubber/multiwalled carbon nanotube nanocomposite

    Get PDF
    The physical properties of the rubber blends are influenced by vulcanization and filler distribution. Normally, rubbers are vulcanized by systems based on sulfur or peroxide with the most common filler carbon black. Radiation can also produce crosslink densities like those obtained by sulphur curing, but the net effects, are similar, though not identical. The type of crosslink formed in this method (–C–C–) give rise to better mechanical properties at higher temperature. This work reports on the investigations carried out on natural rubber (SMR) filled with the multiwall carbon nanotubes (MWCNTs). This system of SMR/MWCNTs was subjected to different radiation dosages and compared with nonradiated samples in order to determine the improvement in mechanical properties of the rubber system in the presence of MWCNTs and irradiation dosages. The amount of MWCNTs in this study was varied from 1 to 7 Phr and the irradiation doses were varied from 50 to 200 KGy. Mechanical properties, especially, tensile strength (TS), elongation at break had been studied as a function of irradiation dose and degree of loading with MWCNTs. Gel fraction indicated an increase in the degree of crosslink with the increase in the MWCT and radiation dosage. XRD was carried out to check the increase in the crytallinty of the nanocomposite system. The overall results obtained indicate significant improvement in the mechanical and thermal properties by radiation crosslinking in presence of MWCNTs. These results were further supported by TEM micrograph and nanoindentation

    Performance Analysis of a Three-to-Five Phase Dual Matrix Converter Based on Space Vector Pulse Width Modulation

    Get PDF
    In this paper, space vector pulse width modulation (SVPWM)-based algorithms for a five-phase open-end load fed from dual matrix converter (DMC) have been proposed. In the presented modulation methods, the reference output voltage vector is synthesized from two three-to-five phase matrix converters at both the ends of the load. Depending on the power-sharing of the two MCs, two proposed modulation methods are defined as equal reference sharing (ERS) and unequal reference sharing (URS). The performance of ERS and URS for the three-to-five phase DMC drive is compared. Performance comparison is based on the total harmonic distortion in the output voltages and the percentage of the voltage transferred from the source to the load, for the full linear modulation index (MI) range. Common mode voltage and zero sequence current in the load are also discussed. The efficiency of the ERS and URS is compared. It has been observed that the proposed ERS scheme offers better performance compared with URS for most of the MI values. The suggested modulation techniques are implemented in MATLAB/Simulink. The hardware setup is developed and control algorithm is implemented using dSPACE working in conjunction with the FPGA interface board for practical validation

    Provably secure and efficient audio compression based on compressive sensing

    Get PDF
    The advancement of systems with the capacity to compress audio signals and simultaneously secure is a highly attractive research subject. This is because of the need to enhance storage usage and speed up the transmission of data, as well as securing the transmission of sensitive signals over limited and insecure communication channels. Thus, many researchers have studied and produced different systems, either to compress or encrypt audio data using different algorithms and methods, all of which suffer from certain issues including high time consumption or complex calculations. This paper proposes a compressing sensing-based system that compresses audio signals and simultaneously provides an encryption system. The audio signal is segmented into small matrices of samples and then multiplied by a non-square sensing matrix generated by a Gaussian random generator. The reconstruction process is carried out by solving a linear system using the pseudoinverse of Moore-Penrose. The statistical analysis results obtaining from implementing different types and sizes of audio signals prove that the proposed system succeeds in compressing the audio signals with a ratio reaching 28% of real size and reconstructing the signal with a correlation metric between 0.98 and 0.99. It also scores very good results in the normalized mean square error (MSE), peak signal-to-noise ratio metrics (PSNR), and the structural similarity index (SSIM), as well as giving the signal a high level of security

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review

    Get PDF
    Numerous heating and cooling design methods, including energy storage, geothermal resources, heaters, solar collectors, underground water movement, lakes, and nuclear reactors, require the study of flow regimes in a cavity and their impact on thermal efficiency in heat transportation. Despite the existence of several review studies in the open literature, there is no specific review of heat transfer investigations that consider different cavity designs, such as spheres, squares, trapezoids, and triangles. Therefore, this work aims to conduct a comprehensive review of previous research published between 2016 and 2023 on heat transfer analysis in these cavity designs. The intention is to clarify how various cavity shapes perform in terms of flow and heat transfer, both with and without the addition of nano-enhanced phase change materials (NePCMs), which may include fins, obstacles, cylinders, and baffles. The study also explores the influence of factors like thermophoresis, buoyancy, magnetic forces, and others on heat transport in cavities. Additionally, it investigates the role of air, water, nanofluids, and hybrid nanofluids within cavities. According to the reviewed research, nanoparticles in the base fluid speed up the cooling process and reduce the required discharging time. Thermophoresis, where nanoparticles move from the heated wall to the cold nanofluid flow, becomes more pronounced with increasing Reynolds numbers. Increasing the heated area of the lower flat fin enhances the heat transfer rate, while increasing both the Rayleigh number and the solid volume percentage of nanoparticles reduces it. Radiation blockage alters the path of hot particles and affects the anticipated radiative amount. Optical thickness plays a role in rapidly cooling a medium, and partition thickness has the most significant effect on heat transport when the thermal conductivity ratio is low. Heat transmission is most improved when the Rayleigh number is high and the Richardson number is low

    Levels of (1→3)-β-D-glucan, Candida mannan and Candida DNA in serum samples of pediatric cancer patients colonized with Candida species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveillance cultures may be helpful in identifying patients at increased risk of developing invasive candidiasis. However, only scant information exists on the effect of <it>Candida </it>colonization on serum levels of diagnostic biomarkers. This prospective surveillance study determined the extent of <it>Candida </it>colonization among pediatric cancer patients and its possible impact on serum levels of (1-3)-β-D-glucan (BDG), <it>Candida </it>mannan and <it>Candida </it>DNA.</p> <p>Methods</p> <p>A total of 1075 swabs originating from oropharynx (n = 294), nostrils (n = 600), rectum (n = 28), groin (n = 50), ear (n = 54), and axilla (n = 49) of 63 pediatric cancer patients were cultured for the isolation of <it>Candida </it>spp. Patients yielding <it>Candida </it>spp. from any sites were considered as colonized. Serum samples were collected from patients at the time of first surveillance culture for detection of BDG by Fungitell kit and <it>Candida </it>mannan by Platelia <it>Candida </it>Ag. <it>Candida </it>DNA was detected by using panfungal primers and identification was carried out by using species-specific primers and DNA sequencing.</p> <p>Results</p> <p>Seventy-five (7.6%) swab cultures from 35 (55.5%) patients yielded <it>Candida </it>spp. These isolates included <it>C. albicans </it>(n = 62), <it>C. dubliniensis </it>(n = 8), <it>C. glabrata </it>and <it>C. tropicalis </it>(n = 2 each) and <it>C. krusei </it>(n = 1). Eleven patients were colonized at three or more sites. Eight of 36 serum samples from 6 colonized patients yielded BDG values higher than the currently recommended cut-off value of ≥80 pg/ml. However, none of the serum samples yielded <it>Candida </it>mannan levels ≥0.5 ng/ml and PCR test for <it>Candida </it>DNA was also negative in all the serum samples of colonized patients. During the study period, only two colonized patients subsequently developed candidemia due to <it>C. tropicalis</it>. Besides positive blood cultures, <it>C. tropicalis </it>DNA, BDG and <it>Candida </it>mannan were also detected in serum samples of both the patients.</p> <p>Conclusions</p> <p>The present study demonstrates that while mucosal colonization with <it>Candida </it>species in pediatric cancer patients is common, it does not give rise to diagnostically significant levels of <it>Candida </it>mannan or <it>Candida </it>DNA in serum specimens. However, BDG values may be higher than the cut-off value in some pediatric patients without clinical evidence of invasive <it>Candida </it>infection. The study suggests the utility of <it>Candida </it>mannan or <it>Candida </it>DNA in the diagnosis of invasive candidiasis, however, the BDG levels in pediatric cancer subjects should be interpreted with caution.</p
    corecore