13 research outputs found

    Peptide-mediated growth and dispersion of Au nanoparticles in water via sequence engineering

    Get PDF
    YesThe use of peptides to nucleate, grow, and stabilize nanoparticles in aqueous media via non-covalent interactions offers new possibilities for creating functional, water-dispersed inorganic/organic hybrid materials, particularly for Au nanoparticles. Numerous previous studies have identified peptide sequences that both possess a strong binding affinity for Au surfaces and are capable of supporting nanoparticle growth in water. However, recent studies have shown that not all such peptide sequences can produce stable dispersions of these nanoparticles. Here, via integrated experiments and molecular modeling, we provide new insights into the many factors that influence Au nanoparticle growth and stabilization in aqueous media. We define colloidal stability by the absence of visible precipitation after at least 24 hours post-synthesis. We use binding affinity measurements, nanoparticle synthesis, characterization and stabilization assays, and molecular modeling, to investigate a set of sequences based on two known peptides with strong affinity for Au. This set of biomolecules is designed to probe specific sequence and context effects using both point mutations and global reorganization of the peptides. Our data confirm, for a broader range of sequences, that Au nanoparticle/peptide binding affinity alone is not predictive of peptide-mediated colloidal stability. By comparing nanoparticle stabilization assay outcomes with molecular simulations, we establish a correlation between the colloidal stability of the Au nanoparticles and the degree of conformational diversity in the surface-adsorbed peptides. Our findings suggest future routes to engineer peptide sequences for bio-based growth and dispersion of functional nanoparticles in aqueous media.Air Office of Scientific Research, grant number FA9550-12-1-0226

    Optical control of nanoparticle catalysis influenced by photoswitch positioning in hybrid peptide capping ligands

    Get PDF
    YesHere we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: The N- or C-terminus, or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively; however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.Air Office of Scientific Research, grant number FA9550-12- 1-0226

    Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles

    Get PDF
    YesPeptide-mediated synthesis and assembly of nanostructures opens new routes to functional inorganic/organic hybrid materials. However, understanding of the many factors that influence the interaction of biomolecules, specifically peptides, with metal surfaces remains limited. Understanding of the relationship between peptide sequence and resulting binding affinity and configurations would allow predictive design of peptides to achieve desired peptide/metal interface characteristics. Here, we measured the kinetics and thermodynamics of binding on a Au surface for a series of peptide sequences designed to probe specific sequence and context effects. For example, context effects were explored by making the same mutation at different positions in the peptide and by rearranging the peptide sequence without changing the amino acid content. The degree of peptide-surface contact, predicted from advanced molecular simulations of the surface-adsorbed structures, was consistent with the measured binding constants. In simulations, the ensemble of peptide backbone conformations showed little change with point mutations of the anchor residues that dominate interaction with the surface. Peptide-capped Au nanoparticles were produced using each sequence. Comparison of simulations with nanoparticle synthesis results revealed a correlation between the colloidal stability of the Au nanoparticles and the degree of structural disorder in the surface-adsorbed peptide structures for this family of sequences. These findings suggest new directions in the optimization and design of biomolecules for in situ peptide-based nanoparticle growth, binding, and dispersion in aqueous media

    Sequence-dependent structure/function relationships of catalytic peptide-enabled gold nanoparticles generated under ambient synthetic conditions

    Get PDF
    YesPeptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancemenAir Force Office for Scientific Research (Grant #FA9550-12-1-0226, RRN; AFOSR LRIR) and DOE-BES grant DE-SC0006877, fellowship support from the National Research Council Research Associateshi

    Optical actuation of inorganic/organic interfaces: comparing peptide-azobenzene ligand reconfiguration on gold and silver nanoparticles

    Get PDF
    YesPhotoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.Air Office of Scientific Research, grant number FA9550-12-1-0226

    Production of Flexible Transparent Conducting Films of Self-Fused Nanowires via One-Step Supersonic Spraying

    No full text
    Scalable and economical manufacturing of flexible transparent conducting films (TCF) is a key barrier to widespread adoption of low-cost flexible electronics. Here, a simple, robust, and scalable method of flexible TCF formation using supersonic kinetic spraying is demonstrated. Silver nanowire (AgNW) suspensions are sprayed at supersonic speed to produce self-sintered films of AgNWs on flexible substrates. These films display remarkably low sheet resistance, 90%. These electrically conducting, transparent, and flexible coatings can be deposited over a 100 cm2 area in ≈30 s. Theoretical analysis reveals the underlying physical mechanism behind self-sintering, showing that self-sintering is enabled by the high velocity of impact in supersonic spraying
    corecore