138 research outputs found

    The age and growth of catfish Rita rita (Ham.) from the River Yamuna in north India

    Get PDF
    The age of 224 fishes was determined by counting the translucent zone on the opercular bones and otoliths. Back calculated annual growth of the fish revealed that the absolute growth of the female was better than that of the male upto the third year. From the fourth year onwards the growth of the male exceeded the growth of the female

    Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings

    Get PDF
    Basal stem rot (BSR) is a major disease encountered by Malaysian oil palm caused by Ganoderma species. Pseudomonas aeruginosa has been shown to improve plant growth and is classified as a Plant Growth Promoter Bacterium (PGPB) while Trichoderma species has been reported as the most common biocontrol agents (BCAs) of oil palm rhizosphere. Therefore, based on preliminary trials P. aeruginosa (UPM P3) and Trichoderma asperellum (UPM29) were selected as BCAs to control Ganoderma infection in oil palm. Both BCAs were screened for their antagonistic properties against G. boninense (UPM13), plant growth promoting traits and enzymatic activities. The result of dual culture test demonstrated that P. aeruginosa and T. asperellum were able to inhibit G. boninense growth with the percentage of inhibition radial growth (PIRG) values of 71.42% and 76.85%, respectively. Besides that, both showed positive results for phosphate solubilizing activity and indole acetic acid (IAA) production. However for siderophore production test, only T. asperellum exhibited positive siderophore production. These BCAs were also tested for their ability inproducing hydrolytic enzymes such as chitinase, cellulose, and 1, 3, β-glucanase

    Electroosmotic flow of biorheological micropolar fluids through microfluidic channels

    Get PDF
    An analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization (i.e. wall zeta potential ≤ 25mV). We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications

    Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial

    Get PDF
    Joint modeling of longitudinal and survival data can provide more efficient and less biased estimates of treatment effects through accounting for the associations between these two data types. Sponsors of oncology clinical trials routinely and increasingly include patient-reported outcome (PRO) instruments to evaluate the effect of treatment on symptoms, functioning, and quality of life. Known publications of these trials typically do not include jointly modeled analyses and results. We formulated several joint models based on a latent growth model for longitudinal PRO data and a Cox proportional hazards model for survival data. The longitudinal and survival components were linked through either a latent growth trajectory or shared random effects. We applied these models to data from a randomized phase III oncology clinical trial in mesothelioma. We compared the results derived under different model specifications and showed that the use of joint modeling may result in improved estimates of the overall treatment effect

    DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment

    Get PDF
    Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma
    corecore