75 research outputs found

    Papillomavirus E5: the smallest oncoprotein with many functions

    Get PDF
    Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent

    Intelligent agent simulator in massive crowd

    Get PDF
    Crowd simulations have many benefits over real-life research such as in computer games, architecture and entertainment. One of the key elements in this study is to include elements of decision-making into the crowd. The aim of this simulator is to simulate the features of an intelligent agent to escape from crowded environments especially in one-way corridor, two-way corridor and four-way intersection. The addition of the graphical user interface enables intuitive and fast handling in all settings and features of the Intelligent Agent Simulator and allows convenient research in the field of intelligent behaviour in massive crowd. This paper describes the development of a simulator by using the Open Graphics Library (OpenGL), starting from the production of training data, the simulation process, until the simulation results. The Social Force Model (SFM) is used to generate the motion of agents and the Support Vector Machine (SVM) is used to predict the next step for intelligent agent

    Perancangan Alat Pengering Mie Ramah Lingkungan

    Full text link
    Noodle is a food product which is made from wheat, with or without additional ingredients. The products of noodle are generally used as the source of energy because the contents of carbohydrates are relatively high.Drainage is a process to extract or separate the water in the relatively small ammount from the substances using thermal energy. The purposes from this drainage process are: to decrease the water level from the subtances to have longer shelflife, decrease the subtances' volume to ease and save the transport costs, packaging and storage.The main principple of drainage is extraction of the water from subtances as the result on process of heat transfer which is correlated with the difference of temperature between product's suface with water's surface in several location inside the products.Noodle drainage methods can be distinguished as Home Industrial Scale and Big Industrial Scale. Home Industrial Scale can be distinguished as Sun dry and Toaster. Big Industrial Scale can be distinguished as Toaster and Hot Dryer.In this research, noodle drying process are using the tools that can lessen the weaknesses which is owned by the previous tools used, including in big industry. The tool used in this research is using centrifugal force for drainage and blower with the low costs.Materials used in this research have a simple design thatmake it easy to be applied. Moreover the materials used are save for the food processing

    Microwave Reflection Based Dielectric Spectroscopy for Moisture Content in Melele Mango Fruit (Mangifera Indica L.)

    Get PDF
    The Melele mango is one of the special local fruit Malaysia and it has high commercial value. However, the current methods are not efficient in determining optimum period to harvest. The optimum harvest time has close relationship with moisture content in fruit. The reflection based dielectric spectroscopic technique is conducted to measure moisture in Melele mango fruits. Dielectric and reflection measurements were conducted over a frequency range from 200 MHz to 8 GHz on clone Melele mango. Dielectric constant, loss factor and complex reflection coefficient of Melele mango with different moisture content were measured using an Agilent E8362B PNA Network Analyzer in conjunction with an Agilent 85070E High Temperature Probe over a frequency range from 200 MHz to 8 GHz. The measured reflection coefficient is presented in magnitude and phase. Dielectric constant and loss factor decreases when the moisture content in mango fruit decreases. The magnitude of the reflection coefficient descends due to increment of the dielectric constant. The results show that the measured dielectric properties and complex reflection coefficient provides the ability to predict fruit moisture content

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Different contribution of bovine papillomavirus type 1 oncoproteins to the transformation of equine fibroblasts

    No full text
    Equine sarcoids represent the most common skin tumours in equids worldwide, characterized by localized invasion, rare regression and high recurrence following surgical intervention. Bovine papillomavirus type 1 (BPV-1) and less commonly BPV-2 are now widely recognized as the causative agents of the disease. Fibroblasts isolated from sarcoid: are highly invasive. Invasion is associated with a high level of viral gene expression and matrix metalloproteinase upregulation. However, it remains unclear to what extent BPV-1 proteins are involved in the transformation of equine cells. To address this question, the individual viral genes E5, E6 and E7 were overexpressed in normal equine fibroblasts (EqPaIF cells) and in the immortal but not fully transformed sarcoid-derived EqS02a cell line. The proliferation and invasiveness of these cell lines were assessed. E5 and E6 were found to be responsible for the enhanced cell proliferation and induction of increased invasion in EqS02a cells, whilst E7 appeared to enhance cell anchorage independence. Knockdown of BPV-1 oncogene expression by small interfering RNA reversed the transformed phenotype of sarcoid fibroblasts. Together, these observations strongly suggest that BPV-1 proteins play indispensable roles in the transformation of equine fibroblasts. These data also suggest that BPV-1 proteins are potential drug targets for equine sarcoid therap
    corecore