10 research outputs found

    OSCILLATOR STRENGTHS AND LIFETIMES FOR THE P XII

    No full text
    Semi-empirical weighted oscillator strengths (gf) and lifetimes presented in this work for all experimentally known electric dipole P XII spectral lines and energy levels were computed within a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The method produces lifetime and gf values that are in agreement with intensity observations used for the interpretation of spectrograms of solar and laboratory plasmas

    Effect of gamma (γ-) radiation on the opto-structural and morphological properties of green synthesized BaO nanoparticles using Moringa Oleifera leaves

    No full text
    In this current assessment, BaO synthesized from Moringa Oleifera leaves were irradiated using 0–75 kGy gamma radiation and investigated its physical impacts. The x-ray diffraction (XRD) data demonstrated the synthesis of tetragonal BaO, and no phase deviation was observed after irradiation. As doses are increased, the overall crystallite size were decreased due to an increase in defects and disorders. The tetragonal BaO was evident in Fourier transform infrared (FTIR) spectra prior to and following irradiation, while peak intensities and wavenumbers varied considerably. The as-prepared BaO showed a spherical shape morphology, and Field emission scanning electron microscopy (FESEM) indicated no vital deviations in it after irradiation. As irradiation shifts from 0 to 75 kGy, optical bandgap was increased from 4.55 to 4.93 eV, evaluated using Kubelka-Munk (K-M) equation from UV–vis–NIR spectrophotometer. Opto-electronic and photonic devices have challenges in extreme radiation conditions, such as space and nuclear environments. So, these assessments suggested that BaO can withstand high levels of gamma photon and could be a good option for photonic and optoelectronic instruments in an extreme gamma-ray exposed conditions

    Network-Based Biomonitoring:Exploring Freshwater Food Webs With Stable Isotope Analysis and DNA Metabarcoding

    No full text
    Threatened freshwater ecosystems urgently require improved tools for effective management. Food web analysis is currently under-utilized, yet can be used to generate metrics to support biomonitoring assessments by measuring the stability and robustness of ecosystems. Using a previously developed analysis pipeline, we combined taxonomic outputs from DNA metabarcoding with a text-mining routine to extract trait information directly from the literature. This pipeline allowed us to generate heuristic food webs for sites within the lower Saint John/Wolastoq River and the Grand Lake Meadows (hereafter called the “GLM complex”), Atlantic Canada's largest freshwater wetland. While these food webs are derived from empirical traits and their structure has been shown to discriminate sites both spatially and temporally, the accuracy of their properties have not been assessed against other methods of trophic analysis. We explored two approaches to validate the utility of heuristic food webs. First, we qualitatively compared how well-trophic position derived from heuristic food webs recovered spatial and temporal differences across the GLM complex in comparison to traditional stable isotope approaches. Second, we explored how the trophic position of invertebrates, derived from heuristic food webs, predicted trophic position measured from δ 15N values. In general, both heuristic food webs and stable isotopes were able to detect seasonal changes in maximum trophic position in the GLM complex. Samples from the entire GLM complex demonstrated that prey-averaged trophic position measured from heuristic food webs strongly predicted trophic position inferred from stable isotopes (R 2 = 0.60), and even stronger relationships were observed for some individual models (R 2 = 0.78 for best model). Beyond their areas of congruence, heuristic food web and stable isotope analyses also appear to complement one another, suggesting a surprising degree of independence between community trophic niche width (assessed from stable isotopes) and food web size and complexity (assessed from heuristic food webs). Collectively, these analyses indicate that trait-based networks have properties that correspond to those of actual food webs, supporting the routine adoption of food web metrics for ecosystem biomonitoring
    corecore