50 research outputs found

    Homelessness Coverage in Major Canadian Newspapers, 1987 – 2007

    Get PDF
    This article describes how the Canadian printed news media depicted the homeless and their situations between 1987 and 2007. Our study used a descriptive, cross-sectional design and a content analysis was conducted on selected newspaper articles on homelessness issues. The main themes were housing-related issues, profiling of homelessness, health-related issues, economic factors, illegal activities, community aid and support, and social factors as cause of homelessness. Housing related issues, community aid and support, profiling of homelessness and economic factors were addressed in 85.3% of the stories. This study provides a retrospective examination of the media’s interests in and portrayal of the homeless and homelessness issues

    Diagnostic yield of rare skeletal dysplasia conditions in the radiogenomics era

    Get PDF
    Background Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a heterogeneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important than ever to molecularly confirm SD conditions. Data on ‘rates-of-molecular yields’ in SD conditions, through exome sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (n = 54) and South Korea (n = 185) respectively. Methods We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics pipeline, allowed for both gene-targeted and gene-agnostic approaches. Results Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (n = 8/15) of patients; 46.7% (n = 7/15) having a definite molecular diagnosis and 6.7% (n = 1/15) having a likely molecular diagnosis. We discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known diagnoses pre-WES (n = 10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest returns. Conclusions Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural history/mechanistic details, and likely increased therapies and clinical trials

    The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Get PDF
    ABSTRACT It is well established that protein malnutrition (PM) impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2%) and compared to a control diet (12%) mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis
    corecore