167 research outputs found

    Benchmark nonperturbative calculations for the electron-impact ionization of Li(2s) and Li(2p)

    Get PDF
    Three independent nonperturbative calculations are reported for the electron-impact ionization of both the ground and first excited states of the neutral lithium atom. The time-dependent close-coupling, the R matrix with pseudostates, and the converged close-coupling methods yield total integral cross sections that are in very good agreement with each other, while perturbative distorted-wave calculations yield cross sections that are substantially higher. These nonperturbative calculations provide a benchmark for the continued development of electron-atom experimental methods designed to measure both ground and excited state ionization

    Hyperspherical partial wave theory applied to electron hydrogen-atom ionization calculation for equal energy sharing kinematics

    Get PDF
    Hyperspherical partial wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of R\"oder \textit {et al} [51] and with the latest theoretical results of the ECS and CCC calculations [29] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large Θab\Theta_{ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [35], it may be said that the hyperspherical partial wave theory is quite appropriate for the description of ionization events of electron-hydrogen type systems. It is also clear that the present approach in the implementation of the hyperspherical partial wave theory is very appropriate.Comment: 16 pages, 9 figures, LaTeX file and EPS figures. To appear in Phys. Rev.

    Strong rejuvenation in a chiral-glass superconductor

    Full text link
    The glassy paramagnetic Meissner phase of a Bi2_2Sr2_2CaCu2_2Ox_x superconductor (xx = 8.18) is investigated by squid magnetometry, using ``dc-memory'' experiments employed earlier to study spin glasses. The temperature dependence of the zero-field-cooled and thermo-remanent magnetization is recorded on re-heating after specific cooling protocols, in which single or multiple halts are performed at constant temperatures. The 'spin' states equilibrated during the halts are retrieved on re-heating. The observed memory and rejuvenation effects are similar to those observed in Heisenberg-like spin glasses.Comment: REVTeX 4 style; 5 pages, 5 figure

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, wLζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, θ\theta, which determines the violation of hyperscaling, the correlation length exponent ν\nu, and the magnetization exponent β\beta. The value β=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
    corecore