1,696 research outputs found

    The Minimal Moose for a Little Higgs

    Full text link
    Recently a new class of theories of electroweak symmetry breaking have been constructed. These models, based on deconstruction and the physics of theory space, provide the first alternative to weak-scale supersymmetry with naturally light Higgs fields and perturbative new physics at the TeV scale. The Higgs is light because it is a pseudo-Goldstone boson, and the quadratically divergent contributions to the Higgs mass are cancelled by new TeV scale ``partners'' of the {\em same} statistics. In this paper we present the minimal theory space model of electroweak symmetry breaking, with two sites and four link fields, and the minimal set of fermions. There are very few parameters and degrees of freedom beyond the Standard Model. Below a TeV, we have the Standard Model with two light Higgs doublets, and an additional complex scalar weak triplet and singlet. At the TeV scale, the new particles that cancel the 1-loop quadratic divergences in the Higgs mass are revealed. The entire Higgs potential needed for electroweak symmetry breaking--the quartic couplings as well as the familiar negative mass squared--can be generated by the top Yukawa coupling, providing a novel link between the physics of flavor and electroweak symmetry breaking.Comment: 15 pages. References added. Included clarifying comments on the origin of quartic couplings, and on power-counting. More elegant model for generating Higgs potential from top Yukawa coupling presente

    Persistent and Transient Blank Field Sources

    Get PDF
    Blank field sources (BFS) are good candidates for hosting dim isolated neutron stars (DINS). The results of a search of BFS in the ROSAT HRI images are revised. We then focus on transient BFS, arguing that they belong to a rather large population. The perspectives of future research on DINS are then discussed.Comment: 3 pages, 0 figures. Paper presented at the Conference "Isolated Neutron Stars: from the interior to the surface", London, April 2006. Astrophysics and Space Science, in pres

    The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent

    Get PDF
    Aims: The data regarding the associations of body mass index (BMI) with cardiovascular (CVD) risk, especially for those at the low categories of BMI, are conflicting. The aim of our study was to examine the associations of body composition (assessed by five different measures) with incident CVD outcomes in healthy individuals. Methods and results: A total of 296 535 participants (57.8% women) of white European descent without CVD at baseline from the UK biobank were included. Exposures were five different measures of adiposity. Fatal and non-fatal CVD events were the primary outcome. Low BMI (≤18.5 kg m−2) was associated with higher incidence of CVD and the lowest CVD risk was exhibited at BMI of 22–23 kg m−2 beyond, which the risk of CVD increased. This J-shaped association attenuated substantially in subgroup analyses, when we excluded participants with comorbidities. In contrast, the associations for the remaining adiposity measures were more linear; 1 SD increase in waist circumference was associated with a hazard ratio of 1.16 [95% confidence interval (CI) 1.13–1.19] for women and 1.10 (95% CI 1.08–1.13) for men with similar magnitude of associations for 1 SD increase in waist-to-hip ratio, waist-to-height ratio, and percentage body fat mass. Conclusion: Increasing adiposity has a detrimental association with CVD health in middle-aged men and women. The association of BMI with CVD appears more susceptible to confounding due to pre-existing comorbidities when compared with other adiposity measures. Any public misconception of a potential ‘protective’ effect of fat on CVD risk should be challenged

    Brane World Susy Breaking from String/M Theory

    Full text link
    String and M-theory realizations of brane world supersymmetry breaking scenarios are considered in which visible sector Standard Model fields are confined on a brane, with hidden sector supersymmetry breaking isolated on a distant brane. In calculable examples with an internal manifold of any volume the Kahler potential generically contains brane--brane non-derivative contact interactions coupling the visible and hidden sectors and is not of the no-scale sequestered form. This leads to non-universal scalar masses and without additional assumptions about flavor symmetries may in general induce dangerous sflavor violation even though the Standard Model and supersymmetry branes are physically separated. Deviations from the sequestered form are dictated by bulk supersymmetry and can in most cases be understood as arising from exchange of bulk supergravity fields between branes or warping of the internal geometry. Unacceptable visible sector tree-level tachyons arise in many models but may be avoided in certain classes of compactifications. Anomaly mediated and gaugino mediated contributions to scalar masses are sub-dominant except in special circumstances such as a flat or AdS pure five--dimensional bulk geometry without bulk vector multiplets.Comment: Latex, 83 pages, references adde

    Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

    Get PDF
    Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.National Science Foundation (U.S.) (CHE-1111557

    Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays

    Full text link
    We examine the melting of commensurate and incommensurate vortex lattices interacting with square pinning arrays through the use of numerical simulations. For weak pinning strength in the commensurate case we observe an order-order transition from a commensurate square vortex lattice to a triangular floating solid phase as a function of temperature. This floating solid phase melts into a liquid at still higher temperature. For strong pinning there is only a single transition from the square pinned lattice to the liquid state. For strong pinning in the incommensurate case, we observe a multi-stage melting in which the interstitial vortices become mobile first, followed by the melting of the entire lattice, consistent with recent imaging experiments. The initial motion of vortices in the incommensurate phase occurs by an exchange process of interstitial vortices with vortices located at the pinning sites. We have also examined the vortex melting behavior for higher matching fields and find that a coexistence of a commensurate pinned vortex lattice with an interstitial vortex liquid occurs while at higher temperatures the entire vortex lattice melts. For triangular arrays at incommensurate fields higher than the first matching field we observe that the initial vortex motion can occur through a novel correlated ring excitation where a number of vortices can rotate around a pinned vortex. We also discuss the relevance of our results to recent experiments of colloidal particles interacting with periodic trap arrays.Comment: 8 figure

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    Vortex Solid-Liquid Transition in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with a High Density of Strong Pins

    Full text link
    The introduction of a large density of columnar defects in %underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals does not, at sufficiently low vortex densities, increase the irreversibility line beyond the first order transition (FOT) field of pristine crystals. At such low fields, the flux line wandering length rwr_{w} behaves as in pristine %Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. Next, vortex positional correlations along the cc--axis in the vortex Bose glass at fields above the FOT are smaller than in the low--field vortex solid. Third, the Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in c-axis phase correlations. These observations are understood in terms of the ``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004 Revised version 18-3-200

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate KK^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, KK^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after KK^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review
    corecore