1,696 research outputs found
The Minimal Moose for a Little Higgs
Recently a new class of theories of electroweak symmetry breaking have been
constructed. These models, based on deconstruction and the physics of theory
space, provide the first alternative to weak-scale supersymmetry with naturally
light Higgs fields and perturbative new physics at the TeV scale. The Higgs is
light because it is a pseudo-Goldstone boson, and the quadratically divergent
contributions to the Higgs mass are cancelled by new TeV scale ``partners'' of
the {\em same} statistics. In this paper we present the minimal theory space
model of electroweak symmetry breaking, with two sites and four link fields,
and the minimal set of fermions. There are very few parameters and degrees of
freedom beyond the Standard Model. Below a TeV, we have the Standard Model with
two light Higgs doublets, and an additional complex scalar weak triplet and
singlet. At the TeV scale, the new particles that cancel the 1-loop quadratic
divergences in the Higgs mass are revealed. The entire Higgs potential needed
for electroweak symmetry breaking--the quartic couplings as well as the
familiar negative mass squared--can be generated by the top Yukawa coupling,
providing a novel link between the physics of flavor and electroweak symmetry
breaking.Comment: 15 pages. References added. Included clarifying comments on the
origin of quartic couplings, and on power-counting. More elegant model for
generating Higgs potential from top Yukawa coupling presente
Persistent and Transient Blank Field Sources
Blank field sources (BFS) are good candidates for hosting dim isolated
neutron stars (DINS). The results of a search of BFS in the ROSAT HRI images
are revised. We then focus on transient BFS, arguing that they belong to a
rather large population. The perspectives of future research on DINS are then
discussed.Comment: 3 pages, 0 figures. Paper presented at the Conference "Isolated
Neutron Stars: from the interior to the surface", London, April 2006.
Astrophysics and Space Science, in pres
The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent
Aims:
The data regarding the associations of body mass index (BMI) with cardiovascular (CVD) risk, especially for those at the low categories of BMI, are conflicting. The aim of our study was to examine the associations of body composition (assessed by five different measures) with incident CVD outcomes in healthy individuals.
Methods and results:
A total of 296 535 participants (57.8% women) of white European descent without CVD at baseline from the UK biobank were included. Exposures were five different measures of adiposity. Fatal and non-fatal CVD events were the primary outcome. Low BMI (≤18.5 kg m−2) was associated with higher incidence of CVD and the lowest CVD risk was exhibited at BMI of 22–23 kg m−2 beyond, which the risk of CVD increased. This J-shaped association attenuated substantially in subgroup analyses, when we excluded participants with comorbidities. In contrast, the associations for the remaining adiposity measures were more linear; 1 SD increase in waist circumference was associated with a hazard ratio of 1.16 [95% confidence interval (CI) 1.13–1.19] for women and 1.10 (95% CI 1.08–1.13) for men with similar magnitude of associations for 1 SD increase in waist-to-hip ratio, waist-to-height ratio, and percentage body fat mass.
Conclusion:
Increasing adiposity has a detrimental association with CVD health in middle-aged men and women. The association of BMI with CVD appears more susceptible to confounding due to pre-existing comorbidities when compared with other adiposity measures. Any public misconception of a potential ‘protective’ effect of fat on CVD risk should be challenged
Brane World Susy Breaking from String/M Theory
String and M-theory realizations of brane world supersymmetry breaking
scenarios are considered in which visible sector Standard Model fields are
confined on a brane, with hidden sector supersymmetry breaking isolated on a
distant brane. In calculable examples with an internal manifold of any volume
the Kahler potential generically contains brane--brane non-derivative contact
interactions coupling the visible and hidden sectors and is not of the no-scale
sequestered form. This leads to non-universal scalar masses and without
additional assumptions about flavor symmetries may in general induce dangerous
sflavor violation even though the Standard Model and supersymmetry branes are
physically separated. Deviations from the sequestered form are dictated by bulk
supersymmetry and can in most cases be understood as arising from exchange of
bulk supergravity fields between branes or warping of the internal geometry.
Unacceptable visible sector tree-level tachyons arise in many models but may be
avoided in certain classes of compactifications. Anomaly mediated and gaugino
mediated contributions to scalar masses are sub-dominant except in special
circumstances such as a flat or AdS pure five--dimensional bulk geometry
without bulk vector multiplets.Comment: Latex, 83 pages, references adde
Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.National Science Foundation (U.S.) (CHE-1111557
Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays
We examine the melting of commensurate and incommensurate vortex lattices
interacting with square pinning arrays through the use of numerical
simulations. For weak pinning strength in the commensurate case we observe an
order-order transition from a commensurate square vortex lattice to a
triangular floating solid phase as a function of temperature. This floating
solid phase melts into a liquid at still higher temperature. For strong pinning
there is only a single transition from the square pinned lattice to the liquid
state. For strong pinning in the incommensurate case, we observe a multi-stage
melting in which the interstitial vortices become mobile first, followed by the
melting of the entire lattice, consistent with recent imaging experiments. The
initial motion of vortices in the incommensurate phase occurs by an exchange
process of interstitial vortices with vortices located at the pinning sites. We
have also examined the vortex melting behavior for higher matching fields and
find that a coexistence of a commensurate pinned vortex lattice with an
interstitial vortex liquid occurs while at higher temperatures the entire
vortex lattice melts. For triangular arrays at incommensurate fields higher
than the first matching field we observe that the initial vortex motion can
occur through a novel correlated ring excitation where a number of vortices can
rotate around a pinned vortex. We also discuss the relevance of our results to
recent experiments of colloidal particles interacting with periodic trap
arrays.Comment: 8 figure
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
Vortex Solid-Liquid Transition in BiSrCaCuO with a High Density of Strong Pins
The introduction of a large density of columnar defects in %underdoped
BiSrCaCuO crystals does not, at sufficiently low
vortex densities, increase the irreversibility line beyond the first order
transition (FOT) field of pristine crystals. At such low fields, the flux line
wandering length behaves as in pristine
%BiSrCaCuO crystals. Next, vortex positional
correlations along the --axis in the vortex Bose glass at fields above the
FOT are smaller than in the low--field vortex solid. Third, the
Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in
c-axis phase correlations. These observations are understood in terms of the
``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004
Revised version 18-3-200
Density dependent hadron field theory for neutron stars with antikaon condensates
We investigate and condensation in -equilibrated
hyperonic matter within a density dependent hadron field theoretical model. In
this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by
the exchange of mesons. Density dependent meson-baryon coupling constants are
obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn
A nucleon-nucleon potential. It is found that the threshold of antikaon
condensation is not only sensitive to the equation of state but also to
antikaon optical potential depth. Only for large values of antikaon optical
potential depth, condensation sets in even in the presence of negatively
charged hyperons. The threshold of condensation is always reached
after condensation. Antikaon condensation makes the equation of state
softer thus resulting in smaller maximum mass stars compared with the case
without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review
- …
