394 research outputs found
Constructing the fermion-boson vertex in QED3
We derive perturbative constraints on the transverse part of the
fermion-boson vertex in massive QED3 through its one loop evaluation in an
arbitrary covariant gauge. Written in a particular form, these constraints
naturally lead us to the first non-perturbative construction of the vertex,
which is in complete agreement with its one loop expansion in all momentum
regimes. Without affecting its one-loop perturbative properties, we also
construct an effective vertex in such a way that the unknown functions defining
it have no dependence on the angle between the incoming and outgoing fermion
momenta. Such a vertex should be useful for the numerical study of dynamical
chiral symmetry breaking, leading to more reliable results.Comment: 13 pages, 2 figure
ONE LOOP QED VERTEX IN ANY COVARIANT GAUGE: ITS COMPLETE ANALYTIC FORM
The one loop vertex in QED is calculated in arbitrary covariant gauges as an
analytic function of its momenta. The vertex is decomposed into a longitudinal
part, that is fully responsible for ensuring the Ward and Ward-Takahashi
identities are satisfied, and a transverse part. The transverse part is
decomposed into 8 independent components each being separately free of
kinematic singularities in covariant gauge in a basis that modifies
that proposed by Ball and Chiu. Analytic expressions for all 11 components of
the vertex are given explicitly in terms of elementary functions
and one Spence function. These results greatly simplify in particular kinematic
regimes.Comment: 35 pages, latex, 2 figures, Complete postscript file available from:
ftp://cpt1.dur.ac.uk/pub/preprints/dtp95/dtp9506/dtp9406.p
Coupled virus - bacteria interactions and ecosystem function in an engineered microbial system
Viruses are thought to control bacterial abundance, affect community composition and influence ecosystem function in natural environments. Yet their dynamics have seldom been studied in engineered systems, or indeed in any system, for long periods of time. We measured virus abundance in a full-scale activated sludge plant every week for two years. Total bacteria and ammonia oxidising bacteria (AOB) abundances, bacterial community profiles, and a suite of environmental and operational parameters were also monitored. Mixed liquor virus abundance fluctuated over an order of magnitude (3.18 × 108 – 3.41 × 109 virus’s mL-1) and that variation was statistically significantly associated with total bacterial and AOB abundance, community composition, and effluent concentrations of COD and NH4+- N and thus system function. This suggests viruses play a far more important role in the dynamics of activated sludge systems than previously realised and could be one of the key factors controlling bacterial abundance, community structure and functional stability and may cause reactors to fail. These finding are based on statistical associations, not mechanistic models. Nevertheless, viral associations with abiotic factors, such as pH, make physical sense giving credence to these findings and highlighting the role that physical factors play in virus ecology. Further work is needed to identify and quantify specific bacteriophage and their hosts to enable us to develop mechanistic models of the ecology of viruses in wastewater treatment systems. However, since we have shown that viruses can be related to effluent quality and virus quantification is simple and cheap, practitioners would probably benefit from quantifying viruses now
QCD Down Under: Building Bridges
The strong coupling regime of QCD is responsible for 99% of hadronic
phenomena. Though considerable progress has been made in solving QCD in this
non-perturbative region, we nevertheless have to rely on a disparate range of
models and approximations. If we are to gain an understanding of the underlying
physics and not just have numerical answers from computing `` black'' boxes, we
must build bridges between the parameter space where models and approximations
are valid to the regime describing experiment, and between the different
modellings of strong dynamics. We describe here how the
Schwinger-Dyson/Bethe-Salpeter approach provides just such a bridge, linking
physics, the lattice and experiment.Comment: 8 pages, 10 figures. Opening talk at Workshop on QCD Down Under,
March 2004, Barossa Valley and Adelaide (to be published in the Proceedings
Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels
Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress
parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient
clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df ) of the fibrin network,
the gel network formation time (TGP ) and the shear elastic modulus, respectively. The results of this first haemorheological
application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear
stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure
of forming clots to increasing levels of shear stress produces a corresponding elevation in df , consistent with the formation of
tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded.
The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network
as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies
of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df
and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be
attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear
stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for
the study of the effects of physiological and pathological levels of shear on clot properties
The Quark-Photon Vertex and the Pion Charge Radius
The rainbow truncation of the quark Dyson-Schwinger equation is combined with
the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study
the low-momentum behavior of the pion electromagnetic form factor. With model
gluon parameters previously fixed by the pion mass and decay constant, the pion
charge radius is found to be in excellent agreement with the data. When
the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex
directly from the quark propagator, less than half of is generated.
The remainder of is seen to be attributable to the presence of the
-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure
Population-level seasonality in cardiovascular mortality, blood pressure, BMI and inflammatory cells in UK Biobank
Introduction: The risk of mortality from cardiovascular disease (CVD) is higher in wintertime throughout the world, but it is not known if this reflects annual changes in diet or lifestyle, or an endogenous photoperiodic mechanism that is sensitive to changes in daylength.
Methods: Phenotypic data on cardiometabolic and lifestyle factors were collected throughout a 4 year time period from 502,642 middle-aged participants in UK Biobank. To assess the impact of seasonal environmental changes on cardiovascular risk factors, we linked these data to the outdoor temperature and day length at the time of assessment. Self-reported information on physical activity, diet and disease status were used to adjust for confounding factors related to health and lifestyle.
Results: Mortality related to CVD was higher in winter, as were risk factors for this condition including blood pressure, markers of inflammation and BMI. These seasonal rhythms were significantly related to day length after adjustment for other factors that might affect seasonality including physical activity, diet and outdoor temperature.
Conclusions: The risk of CVD may be modulated by day length at temperate latitudes, and the implications of seasonality should be considered in all studies of human cardiometabolic health
The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP
‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society.The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O J= 3 → 2 towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.Peer reviewe
Spontaneous Chiral-Symmetry Breaking in Three-Dimensional QED with a Chern--Simons Term
In three-dimensional QED with a Chern--Simons term we study the phase
structure associated with chiral-symmetry breaking in the framework of the
Schwinger--Dyson equation. We give detailed analyses on the analytical and
numerical solutions for the Schwinger--Dyson equation of the fermion
propagator, where the nonlocal gauge-fixing procedure is adopted to avoid
wave-function renormalization for the fermion. In the absence of the
Chern--Simons term, there exists a finite critical number of four-component
fermion flavors, at which a continuous (infinite-order) chiral phase transition
takes place and below which the chiral symmetry is spontaneously broken. In the
presence of the Chern--Simons term, we find that the spontaneous
chiral-symmetry-breaking transition continues to exist, but the type of phase
transition turns into a discontinuous first-order transition. A simple
stability argument is given based on the effective potential, whose stationary
point gives the solution of the Schwinger-Dyson equation.Comment: 34 pages, revtex, with 9 postscriptfigures appended (uuencoded
- …