29 research outputs found
Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state
We present measurements of the excitation function of elliptic flow at
midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per
nucleon. For the integral flow, we discuss the interplay between collective
expansion and spectator shadowing for three centrality classes. A complete
excitation function of transverse momentum dependence of elliptic flow is
presented for the first time in this energy range, revealing a rapid change
with incident energy below 0.4 AGeV, followed by an almost perfect scaling at
the higher energies. The equation of state of compressed nuclear matter is
addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will
be available at http://www.gsi.de/~fopiwww/pub
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
The incident energy at which the azimuthal distributions in semi-central
heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran,
is studied as a function of mass of emitted particles, their transverse
momentum and centrality for Au+Au collisions. The analysis is performed in a
reference frame rotated with the sidewards flow angle, Theta_flow, relative to
the beam axis. A systematic decrease of E_tran as function of mass of the
reaction products, their transverse momentum and collision centrality is
evidenced. The predictions of a microscopic transport model (IQMD) are compared
with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl.
Phys.
Identification of baryon resonances in central heavy-ion collisions at energies between 1 and 2 AGeV
The mass distributions of baryon resonances populated in near-central
collisions of Au on Au and Ni on Ni are deduced by defolding the spectra
of charged pions by a method which does not depend on a specific resonance
shape. In addition the mass distributions of resonances are obtained from the
invariant masses of pairs. With both methods the deduced mass
distributions are shifted by an average value of -60 MeV/c relative to the
mass distribution of the free resonance, the distributions
descent almost exponentially towards mass values of 2000 MeV/c^2. The observed
differences between and pairs indicate a contribution
of isospin resonances. The attempt to consistently describe the
deduced mass distributions and the reconstructed kinetic energy spectra of the
resonances leads to new insights about the freeze out conditions, i.e. to
rather low temperatures and large expansion velocities.Comment: 30 pages, 13 figures, Latex using documentstyle[12pt,a4,epsfig], to
appear in Eur. Phys. J.
Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker
The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 × 10³⁴ cm⁻²s⁻¹. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 μm × 50 μm and rectangular 100 μm × 25 μm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 μm (2 μm) is obtained using the modules with 50 μm × 50 μm (100 μm × 25 μm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq = 5.3 × 10¹⁵ cm⁻², a resolution of 9.4 μm is achieved at a bias voltage of 800 V using a module with 50 μm × 50 μm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 × 10¹⁶ cm⁻². Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper
