1,309 research outputs found

    Hypothermia Due to an Ascending Impairment of Shivering in Hyperacute Experimental Allergic Encephalomyelitis in the Lewis Rat

    Get PDF
    Severe hypothermia and an ascending impairment of shivering are previously undescribed clinical signs in hyperacute experimental allergic encephalomyelitis (EAE) in the Lewis rat. These occurred in hyperacute EAE induced by inoculation with guinea pig spinal cord homogenate and heat-killed Bordetella pertussis. Hypothermia was first detected on day 6-7 post-inoculation, within 12-24 h of the onset of neurological signs, and became more severe as the disease progressed. Rectal temperatures less than or equal to 30 degrees C were common at ambient temperatures of 19-22 degrees C. Shivering was assessed by palpation and by cold tremor electromyography. Shivering was absent in the tail by day 6-7 post-inoculation. The impairment then progressed to affect the hindlimbs, thorax and occasionally the forelimbs. Shivering was absent in hindlimbs with only mild or moderate weakness. Histological studies revealed perivascular inflammation with polymorphonuclear and mononuclear cells, oedema, fibrin deposition, haemorrhage, primary demyelination and axonal degeneration in the spinal cord, dorsal root ganglia and spinal roots. The brainstem was also involved but the cerebral hemispheres, including the hypothalamus, were spared. The close relationship between the severity of hypothermia and the extent of shivering impairment indicates that reduced shivering is an important cause of hypothermia in hyperacute EAE. It is concluded that this impairment of shivering is due not to hypothalamic damage but to lesions elsewhere in the central and peripheral nervous systems

    Factors associated with ethnical disparity in overall survival for patients with hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is an important cause of cancer-related death worldwide. Ethnical disparity in overall survival has been demonstrated for HCC patients in the United States (U.S.). We aimed to evaluate the contributors to this survival disparity. The SEER database was used to identify HCC patients from 2004 to 2012. Kaplan-Meier curves and Cox proportional hazard models were used to evaluate overall survival by ethnicity and the contributors to ethnical survival disparity. A total of 33 062 patients were included: 15 986 Non-Hispanic Whites, 6535 Hispanic Whites, 4842 African Americans, and 5699 Asians. Compared to Non-Hispanic Whites, African Americans had worse survival (HR, 1.18; 95%CI, 1.14-1.23), while Asians had a better survival (HR, 0.85; 95%CI, 0.82-0.89), and Hispanic Whites had a similar survival (HR, 1.01; 95%CI, 0.97-1.05). Multivariate Cox analysis identified that tumor presentation- and treatment-related factors significantly contributed to the ethnical survival disparity. Especially, tumor size was the most important contributor (HR, 1.11; 95%CI, 1.07-1.16). There is no ethnical survival disparity in patients undergoing liver transplantation and sub-analysis of patients within the Milan criteria for liver transplantation demonstrated no significant survival disparity between African Americans and non-Hispanic Whites in transplantation adjustment analysis (HR, 1.23; 95%CI, 1.11-1.35 in non-adjustment analysis to HR, 1.05; 95%CI, 0.95-1.15 after adjustment). Finally, no important contributor to the superior overall survival in Asians was identified. In conclusion, poor tumor presentation at diagnosis, limited benefit from resection and restricted utilization of liver transplantation are important contributors to poorer survival of African Americans with HCC

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear

    Get PDF
    The method of molecular dynamics computer simulations is employed to study oligomer melts confined in ultra-thin films and subjected to shear. The focus is on the self-diffusion of oligomers near attractive surfaces and on their desorption, together with the effects of increasing energy of adsorption and shear. It is found that the mobility of the oligomers near an attractive surface is strongly decreased. Moreover, although shearing the system forces the chains to stretch parallel to the surfaces and thus increase the energy of adsorption per chain, flow also promotes desorption. The study of chain desorption kinetics reveals the molecular processes responsible for the enhancement of desorption under shear. They involve sequences of conformations starting with a desorbed tail and proceeding in a very fast, correlated, segment-by-segment manner to the desorption of the oligomers from the surfaces.

    Foreground removal from CMB temperature maps using an MLP neural network

    Full text link
    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc

    Behaviour of the topological susceptibility in two colour QCD across the finite density transition

    Get PDF
    The behaviour of the topological susceptibility \chi in QCD with two colours and 8 flavours of quarks is studied at nonzero temperature on the lattice across the finite density transition. It is shown that the signal of \chi drops abruptly at a critical chemical potential \mu_c, much as it happens at the finite temperature and zero density transition. The Polyakov loop and the chiral condensate undergo their transitions at the same critical value \mu_c. At a value \mu_s of the chemical potential, called saturation point, which in our case satisfies \mu_s > \mu_c, Pauli blocking supervenes and consequently the theory becomes quenched.Comment: Latex file, 28 pages, 6 Figures, revised version with further study of Pauli blocking, phase diagram, physical units and the HMD algorithm. A few misprints corrected. Some references adde

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Weak Field Black Hole Formation in Asymptotically AdS Spacetimes

    Full text link
    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd−1,1R^{d-1,1}, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1AdS_{d+1} space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1R^{d,1}.Comment: 50 pages + appendices, 6 figures, v2: Minor revisions, references adde
    • 

    corecore