23 research outputs found
Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies
We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor’s body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.This work was supported in part by the National Institute of Health (Grant R01 AG056014-R01), a UCLM travel grant (to RI), a UCLM research grant to Human Neuroanatomy Laboratory (2020-GRIN-28837), and project EQC2019-006341-P (AEI/FEDER UE)
Global urban environmental change drives adaptation in white clover
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
Galactic transient sources with the Cherenkov Telescope Array
International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities