23 research outputs found
A comparative study of the electrochemical properties of vitamin B-6 related compounds at physiological pH
A comparative study of vitamin B6 group and related compounds in buffered solutions using electrochemical techniques has been performed at neutral pH. Irreversible bi- or tetra-electronic processes are observed for these substances, and the electron transfer coefficient (αn) calculated. It was concluded that either the first or second electron transfer were the rate determining step of the electrode process. The diffusion coefficient of these substances was calculated and the values given follow an inverse tendency to the molecular size. For aldehydes the values obtained were corrected of the hydration reaction.
It is important to remark that catalytic waves were reported for the first time for these compounds. Using a model involving the nitrogen of the basic structure the kinetic constants were calculated for most of them
A review of spatial causal inference methods for environmental and epidemiological applications
The scientific rigor and computational methods of causal inference have had
great impacts on many disciplines, but have only recently begun to take hold in
spatial applications. Spatial casual inference poses analytic challenges due to
complex correlation structures and interference between the treatment at one
location and the outcomes at others. In this paper, we review the current
literature on spatial causal inference and identify areas of future work. We
first discuss methods that exploit spatial structure to account for unmeasured
confounding variables. We then discuss causal analysis in the presence of
spatial interference including several common assumptions used to reduce the
complexity of the interference patterns under consideration. These methods are
extended to the spatiotemporal case where we compare and contrast the potential
outcomes framework with Granger causality, and to geostatistical analyses
involving spatial random fields of treatments and responses. The methods are
introduced in the context of observational environmental and epidemiological
studies, and are compared using both a simulation study and analysis of the
effect of ambient air pollution on COVID-19 mortality rate. Code to implement
many of the methods using the popular Bayesian software OpenBUGS is provided
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely