556 research outputs found

    Meissner effect, Spin Meissner effect and charge expulsion in superconductors

    Full text link
    The Meissner effect and the Spin Meissner effect are the spontaneous generation of charge and spin current respectively near the surface of a metal making a transition to the superconducting state. The Meissner effect is well known but, I argue, not explained by the conventional theory, the Spin Meissner effect has yet to be detected. I propose that both effects take place in all superconductors, the first one in the presence of an applied magnetostatic field, the second one even in the absence of applied external fields. Both effects can be understood under the assumption that electrons expand their orbits and thereby lower their quantum kinetic energy in the transition to superconductivity. Associated with this process, the metal expels negative charge from the interior to the surface and an electric field is generated in the interior. The resulting charge current can be understood as arising from the magnetic Lorentz force on radially outgoing electrons, and the resulting spin current can be understood as arising from a spin Hall effect originating in the Rashba-like coupling of the electron magnetic moment to the internal electric field. The associated electrodynamics is qualitatively different from London electrodynamics, yet can be described by a small modification of the conventional London equations. The stability of the superconducting state and its macroscopic phase coherence hinge on the fact that the orbital angular momentum of the carriers of the spin current is found to be exactly /2\hbar/2, indicating a topological origin. The simplicity and universality of our theory argue for its validity, and the occurrence of superconductivity in many classes of materials can be understood within our theory.Comment: Submitted to SLAFES XX Proceeding

    Singularly Perturbed Monotone Systems and an Application to Double Phosphorylation Cycles

    Full text link
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation ``futile cycle'' motif which plays a central role in eukaryotic cell signaling.Comment: 21 pages, 3 figures, corrected typos, references remove

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Pursuing interpretations of the HERA large-Q2 data

    Get PDF
    We explore interpretations of the anomaly observed by H1 and ZEUS at HERA in deep-inelastic e^+ p scattering at very large Q^2. We discuss the possibilities of new effective interactions and the production of a narrow state of mass 200 GeV with leptoquark couplings. We compare these models with the measured Q^2 distributions: for the contact terms, constraints from LEP2 and the Tevatron allow only a few choices of helicity and flavour structure that could roughly fit the HERA data. The data are instead quite consistent with the Q^2 distribution expected from a leptoquark state. We study the production cross sections of such a particle at the Tevatron and at HERA. The absence of a signal at the Tevatron disfavours the likelihood that any such leptoquark decays only into e^+ q. We then focus on the possibility that the leptoquark is a squark with R-violating couplings. In view of the present experimental limits on such couplings, the most likely production channels are e^+d -> scharm_L or perhaps e^+d->stop, with e^+s->stop a more marginal possibility. Possible tests of our preferred model include the absence both of analogous events in e^- p collisions and of charged current events, and the presence of detectable cascade decays whose kinematical signatures we discuss. We also discuss the possible implications for K->pi nu nubar, neutrinoless double-beta decay, the Tevatron and for e^+ e^- ->q qbar and neutralinos at LEP2.Comment: 28 pages, Latex, epsfig, 8 figures. Note added on contact term

    Supersymmetric Model of Muon Anomalous Magnetic Moment and Neutrino Masses

    Get PDF
    We propose the novel lepton-number relationship Lτ=Le+LμL_\tau = L_e + L_\mu, which is uniquely realized by the interaction (ν^eμ^e^ν^μ)τ^c(\hat \nu_e \hat \mu - \hat e \hat \nu_\mu) \hat \tau^c in supersymmetry and may account for a possibly large muon anomalous magnetic moment. Neutrino masses (with bimaximal mixing) may be generated from the spontaneous and soft breaking of this lepton symmetry.Comment: 10 pages, including 2 figure

    The relative error of calculations at the Pöschl-Teller model potential for the planar channeled muon

    Get PDF
    In the framework of quantum mechanics, we investigate muon channeling in the Si (200) crystal. The transverse energy levels and wave functions are obtained for the Pöschl-Teller and the Doyle-Turner potentials. Comparative analysis demonstrates that analytical results of calculations obtained on the base of the Pöschl-Teller potential are in a good agreement with the numerical results of calculations in the Doyle-Turner model for the low energy levels. These results for the muon with rest mass m[mu] and relativistic factor [gamma] are valid for any particle with elementary charge and rest mass m and relativistic factor [gamma][m]=[gamma](m[mu]/m). Therefore, our results can be useful for the preparation and performing the experimental investigation of the various phenomena accompanying particle channeling

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model

    Get PDF
    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula.Comment: 19 pages, 4 figures; one formula corrected, two author's names corrected; some explanatory comments adde

    Multiple roots of systems of equations by repulsion merit functions

    Get PDF
    In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global min- imizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several ite- rations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.Fundação para a Ciência e a Tecnologia (FCT
    corecore