144 research outputs found
[Prevalence and duration of breastfeeding during the first six months of life: factors affecting an early cessation].
OBJECTIVES: to assess the mean duration, prevalence and reasons that lead to an early cessation of breastfeeding in a group of healthy term infants in the first six months of life. METHODS: prospective, observational study. One-hundred Caucasian, non smoking mothers, that intended to breastfeed for at least 12 weeks, were enrolled. Information on anthropometric parameters, type of delivery, socio-demographic characteristics, mode of feeding and reasons for stopping breastfeeding have been obtained through three different questionnaires (submitted at enrollment, on the 7th day, at 1, 2, 3 and 6 months). RESULTS: exclusive breastfeeding gradually decreased from the 7th day to the 6th month of life. Most of the mothers stopped breastfeeding during the first month and a half or after 3 months and a half. Two percent of the mothers stopped on the 7th day whereas at 6 months the percentage of cessation was 14%. The cumulative percentage of interruption at 6th month was 45%. Maternal factors, like sore nipples or delayed onset of lactation, were the most frequent reasons that led to an early cessation, while during the following months inadequate breast milk and latch-on problems were predominant. On the other hand, attending a pre-natal course or having a previous successful breastfeeding experience were significantly associated with a long-lasting breastfeeding. CONCLUSIONS: promotion of breastfeeding during the prenatal course and a better support for lactation management during the first months seem to be the areas where more efforts are needed to implement breastfeeding rates
ICln : a new regulator of non-erythroid 4.1R localisation and function
To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with
f-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions
Plasma Protein Carbonylation in Haemodialysed Patients : focus on Diabetes and Gender
Patients with end-stage renal disease (ESRD) undergoing haemodialysis (HD) experience oxidative/carbonyl stress, which is postulated to increase after the HD session. The influence of diabetes mellitus and sex on oxidation of plasma proteins in ESRD has not yet been clarified despite that diabetic nephropathy is the most common cause of ESRD in developed and developing countries and despite the increasingly emerging differences between males and females in epidemiology, pathophysiology, clinical manifestations, and outcomes for several diseases. Therefore, this study aimed to evaluate the possible effect of type 2 diabetes mellitus, gender, and dialysis filter on plasma level of protein carbonyls (PCO) in ESRD patients at the beginning and at the end of a single HD session. Results show that mean post-HD plasma PCO levels are significantly higher than mean preHD plasma PCO levels and that the type of dialysis filter and dialysis technique are unrelated to plasma PCO levels. The mean level of plasma PCO after a HD session increases slightly but significantly in nondiabetic ESRD patients compared to diabetic ones, whereas it increases more markedly in women than in men. These novel findings suggest that women with ESRD are more susceptible than men to oxidative/carbonyl stress induced by HD
Short- and long- term effects of cigarette smoke exposure on glutathione homeostasis in human bronchial epithelial cells
Background: Cigarette smoke extract (CSE), a model for studying the effects of tobacco smoke in vivo and in vitro, induces cell oxidative stress and affects the antioxidative glutathione system. We evaluated the impact of CSE on airway epithelial cells and the possible cytoprotective effect of the mucolitic drug S-carboximethilcysteine lysine salt (S-CMC-Lys). Methods: Reduced glutathione (GSH) and reactive oxygen species (ROS) intracellular levels were evaluated by fluorimetry in human bronchial epithelial cells (16-HBE) and the expression and activity of enzymes of the GSH metabolic pathway were investigated by RT-PCR, Western blot and colorimetric assays. Results: CSE significantly increased cell mortality in a time and dose dependent manner, via an apoptosis-independent pathway. Short-term (3 hours) CSE exposure induced an increase in ROS levels and a GSH intracellular concentration drop. In parallel, the expression of glutathione peroxidases 2 and 3, glutathione reductase and glutamate-cysteine-ligase was increased. S-CMC-Lys was effective in counteracting these effects. Conclusion: CSE affects ROS levels, GSH concentration and GSH enzymes pathway. These effects can be to some extent reversed by S-CMC-Lys, that could represent a therapeutic tool to counteract CSE induced oxidative cellular injuries
The expression of wild-type pendrin (SLC26A4) in human embryonic kidney (HEK 293 Phoenix) cells leads to the activation of cationic currents
Objective: The SLC26A4 protein (pendrin) seems to be involved in the exchange of chloride with other anions, therefore being responsible for iodide organification in the thyroid gland and the conditioning of the endolymphatic fluid in the inner ear. Malfunction of SLC26A4 leads to Pendred syndrome, characterized by mild thyroid dysfunction often associated with goiter and/or prelingual deafness. The precise function of the SLC26A4 protein, however, is still elusive. An open question is still whether the SLC26A4-induced ion exchange mechanism is electrogenic or electroneutral. Recently, it has been shown that human pendrin expressed in monkey cells leads to chloride currents. Methods: We overexpressed the human SLC26A4 isoform in HEK293 Phoenix cells and measured cationic and anionic currents by the patch-clamp technique in whole cell configuration. Results: Here we show that human pendrin expressed in human cells does not lead to the activation of chloride currents, but, in contrast, leads to an increase of cationic currents. Conclusion: Our experiments suggest that the SLC26A4-induced chloride transport is electroneutral when expressed in human cellular systems
Current drive at plasma densities required for thermonuclear reactors
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors
Corrigendum: Current drive at plasma densities required for thermonuclear reactors
Nature Communications 1: Article number: 55 (2010); Published: 10 August 2010; Updated:19 September 2013. In Fig. 3 of this Article, the colours of the blue and green curves were accidentally interchanged while the manuscript was being revised. In addition, the x axis labels on Fig. 4 should have read 'Frequency (MHz)'
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
- …