1,624 research outputs found

    Magnetospectroscopy of epitaxial few-layer graphene

    Full text link
    The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.Comment: Invited short review to appear in a special issue of Solid State Communication

    Thread-Scalable Evaluation of Multi-Jet Observables

    Get PDF
    A leading-order, leading-color parton-level event generator is developed for use on a multi-threaded GPU. Speed-up factors between 150 and 300 are obtained compared to an unoptimized CPU-based implementation of the event generator. In this first paper we study the feasibility of a GPU-based event generator with an emphasis on the constraints imposed by the hardware. Some studies of Monte Carlo convergence and accuracy are presented for PP -> 2,...,10 jet observables using of the order of 1e11 events.Comment: 16 pages, 5 figures, 3 table

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep6,43,89,127\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep22125\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep6127\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF2139\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF1521\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE9\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    Semiclassical evaluation of average nuclear one and two body matrix elements

    Get PDF
    Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case the pairing matrix elements are considered explicitly.Comment: 15 pages, REVTeX, 6 ps figures; changed conten

    An absolute polarimeter for high energy protons

    Get PDF
    A study of the spin asymmetries for polarized elastic proton proton collisions in the electromagnetic hadronic interference (CNI) region of momentum transfer provides a method of self calibration of proton polarization. The method can be extended to non-identical spin half scattering so that, in principle, the polarization of a proton may be obtained through an analysis of its elastic collision with a different polarized particle, helium 3 for instance. Sufficiently large CNI spin asymmetries provide enough information to facilitate the evaluation of nearly all the helicity amplitudes at small t as well as the polarization of both initial spin half fermions. Thus it can serve equally well as a polarimeter for helium 3

    On the Numerical Evaluation of One-Loop Amplitudes: the Gluonic Case

    Get PDF
    We develop an algorithm of polynomial complexity for evaluating one-loop amplitudes with an arbitrary number of external particles. The algorithm is implemented in the Rocket program. Starting from particle vertices given by Feynman rules, tree amplitudes are constructed using recursive relations. The tree amplitudes are then used to build one-loop amplitudes using an integer dimension on-shell cut method. As a first application we considered only three and four gluon vertices calculating the pure gluonic one-loop amplitudes for arbitrary external helicity or polarization states. We compare our numerical results to analytical results in the literature, analyze the time behavior of the algorithm and the accuracy of the results, and give explicit results for fixed phase space points for up to twenty external gluons.Comment: 22 pages, 9 figures; v2: references added, version accepted for publicatio

    Chiral Symmetry and Diffractive Neutral Pion Photo- and Electroproduction

    Get PDF
    We show that diffractive production of a single neutral pion in photon-induced reactions at high energy is dynamically suppressed due to the approximate chiral symmetry of QCD. These reactions have been proposed as a test of the odderon exchange mechanism. We show that the odderon contribution to the amplitude for such reactions vanishes exactly in the chiral limit. This result is obtained in a nonperturbative framework and by using PCAC relations between the amplitudes for neutral pion and axial vector current production.Comment: 22 pages, 7 figure

    Universes inside a Λ\Lambda black hole

    Full text link
    We address the question of universes inside a Λ\Lambda black hole which is described by a spherically symmetric globally regular solution to the Einstein equations with a variable cosmological term Λμν\Lambda_{\mu\nu}, asymptotically Λgμν\Lambda g_{\mu\nu} as r0r\to 0 with Λ\Lambda of the scale of symmetry restoration. Global structure of spacetime contains an infinite sequence of black and white holes, vacuum regular cores and asymptotically flat universes. Regular core of a Λ\Lambda white hole models the initial stages of the Universe evolution. In this model it starts from a nonsingular nonsimultaneous big bang, which is followed by a Kasner-type anisotropic expansion. Creation of a mass occurs mostly at the anisotropic stage of quick decay of the initial vacuum energy. We estimate also the probability of quantum birth of baby universes inside a Λ\Lambda black hole due to quantum instability of the de Sitter vacuum.Comment: REVTEX, 9 pages, 13 figures. To appear in Physics Letters
    corecore