
Eur. Phys. J. C (2011) 71:1703
DOI 10.1140/epjc/s10052-011-1703-5

Special Article - Tools for Experiment and Theory

Thread-scalable evaluation of multi-jet observables

Walter T. Gielea, Gerben C. Stavengab, Jan Winterc

Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA

Received: 10 June 2010 / Revised: 3 June 2011 / Published online: 12 July 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We have implemented the leading-color n-gluon
amplitudes using the Berends–Giele recursion relations on a
multi-threaded GPU. Speed-up factors between 150 and 300
are obtained compared to the CPU-based implementation of
the same event generator. In this first paper, we study the
feasibility of a GPU-based event generator with an emphasis
on the constraints imposed by the hardware. Some studies
of Monte Carlo convergence and accuracy are presented for
PP → 2, . . . ,10 jet observables using of the order of 1011

events.

1 Introduction

Leading order (LO) parton-level Monte Carlos (MCs) play
a prominent role in collider phenomenology [1–6]. As one
needs to average the calculation of the observable over many
events, the evaluation time for the event generation is a cru-
cial issue in the development of LO parton level MCs. Fur-
thermore, to make full use of the recent progress in the cal-
culation of virtual corrections [7–10], fast tree-level event
generators are needed for the calculation of the radiative
contributions in a next-to-leading order MC.

One can use large-scale grids for the generation of the
tree-level events. Such grids are expensive and need a large
infrastructure. A more preferable solution would be to run
the MC on a single, affordable workstation. As we will
show this is possible using a massively parallel GPU. The
NVIDIA Tesla computing processor is designed for numer-
ical applications [11] and the CUDA C compiler [12] pro-
vides a familiar development environment. We will use the
NVIDIA® Tesla™ C1060 GPU throughout the paper.1

1We thank the LQCD Collaboration for giving us access to the Tesla
GPU processors.

a e-mail: giele@fnal.gov
b e-mail: stavenga@fnal.gov
c e-mail: jwinter@fnal.gov

In this paper we will execute all steps that are needed
for event generation on the GPU. These steps include the
implementation of the unit-weight phase-space generator
RAMBO [13], the evaluation of the strong coupling and par-
ton density function using LHAPDF [14], the evaluation
of the leading-color gg → 2, . . . ,10 gluon matrix elements
at LO and the calculation of some observables. The CPU
is tasked with calculating the distributions using the event
weight and observables provided by the GPU. By utilizing
memory with a fast access time only, considerable speed-
ups are obtained in the event generation time. This memory
is limited in size, requiring some coding effort. As the GPU
chips are developing fast, we can enhance the capabilities of
our parton-level generator in accordance.

In Refs. [15, 16] methods have been developed to eval-
uate multi-jet cross sections on GPUs within the frame-
work of the HELAS matrix-element evaluator [17], which
forms the basis of the MADGRAPH event generator [1]. The
method is based on individual Feynman diagram evalua-
tions. As such the scaling with the number of external par-
ticles of the scattering process is faster than factorial. Such
an algorithm will have limited scalability properties, which
cannot be compensated by deploying a large number of
threads. Instead, an algorithm of polynomial complexity will
have excellent scaling properties; its only limitation is the
available fast-access memory size. Polynomial algorithms
for the evaluation of ordered LO multi-parton matrix ele-
ments have been formulated in the form of Berends–Giele
(BG) recursion relations [18]. For a leading-color genera-
tor, any Standard Model matrix element can be evaluated
with an algorithm of polynomial complexity of degree 4 [19]
or, by using more memory storage, of degree 3 [20]. For
any fixed color expansion, the complexity remains polyno-
mial. Therefore, we will use ordered recursive evaluations
of the matrix elements instead of Feynman diagram evalua-
tions.

In this paper we present a GPU-based implementation
of all basic tools needed for a LO generator. In Sect. 2
we discuss the GPU and its hardware limitations. Accord-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186483736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:giele@fnal.gov
mailto:stavenga@fnal.gov
mailto:jwinter@fnal.gov

Page 2 of 13 Eur. Phys. J. C (2011) 71:1703

Table 1 The number of n-gluon events, which can be simultaneously executed on one MP (and is equal to 2048/[n × (n + 1)]) and the number
of available threads per event (equal to n × (n + 1)/2). The total number of events evaluated in parallel on the Tesla chip is 30×(events/MP)

n 4 5 6 7 8 9 10 11 12

Events per MP 102 68 48 36 28 22 18 15 13

Threads per event 10 15 21 28 36 45 55 66 78

ing to these limitations, we will determine the optimal run-
ning configuration as a function of the number of gluons.
The algorithmic implementation of the recursion algorithm
and other tools such as phase-space generation, experimen-
tal cuts and parton density functions are discussed in Sect. 3.
Finally, in Sect. 4 we put all pieces together and construct
the leading-color LO parton-level generator capable of gen-
erating up to PP → 10 jets with sufficient statistics for seri-
ous phenomenology. The conclusions and outlook are given
in Sect. 5.

2 Thread-scalable algorithms for event generators

Monte Carlo algorithms belong to a class of algorithms,
which can be trivially parallelized, by dividing the events
over the threads. Optimized for graphics processing, the
GPU works by having many threads executing essentially
the same instructions over different data. For a given class of
events, e.g. n-gluon scattering, the only difference between
the events is due to the external sources, i.e. the momentum
and polarization four-vectors of each gluon defining the state
of the external gluon. The recursive algorithm acts on these
input sources in an identical manner. That is, each thread
can execute the same processor instructions to calculate the
matrix-element weight.

However, because of the hardware constraints such a
straightforward approach is limited by the amount of avail-
able fast access memory. The GPU memory is independent
from the CPU memory and divided into the off-chip global
memory and the on-chip memory. This distinction is impor-
tant as the off-chip memory is large (of the order of giga-
bytes) but slow to access by the threads. Therefore, we want
to limit the access to the global memory by using it only
for the transfer of results to the CPU memory. The on-chip
memory is fast to access, but limited in size (of the order of
tens of kilobytes). The first on-chip memory structures are
the registers. Each thread has its own registers, which can-
not be accessed by other threads. These registers are used
within the algorithm for variable storage, function evalu-
ations, etc. The other on-chip memory structure is shared
memory, which is accessible to all the threads on a multi-
processor (MP). The current GPUs are not yet optimize-able
to one event per thread due to these shared memory and
register constraints. With the next generation of GPUs the

shared memory will increase significantly, and we will reach
the point at which we can evaluate one event per thread up
to large multiplicities of gluons.

From this discussion the limitations are clear as each
event requires a certain amount of the limited register and
shared memory. For the optimal solution, we put the maxi-
mum number of events on one MP, such that the evaluation
does not exceed the available on-chip memory. The result-
ing multiple threads per event can be used to unroll do-loops
etc., thereby help speed up the evaluation. This optimal solu-
tion is dependent on the rapidly evolving hardware structure
of the GPU chips.

By lowering the number of events per MP below the op-
timal solution, the number of available threads per event in-
creases. However, this will not lead to an effective speed-up
of the overall event generation as the total number of threads
per GPU is fixed. Once the number of events to be used per
MP has been determined, the GPU evaluation becomes scal-
able. The MC generator now simply scales with the number
of available MPs on the GPU.

We have used the NVIDIA® Tesla™ C1060 chip for the
numerical evaluations in this paper. This chip consists of
30 MPs each capable of running up to 1024 threads. In the
Appendix we have described the architecture of this com-
puting processor in more detail; here it is sufficient to know
that each MP has 16,384 32-bit registers and an internal
shared memory of 16,384 bytes. Each thread is assigned its
own registers from the pool. The compilation of the current
MC implementation indicates that 35 registers per thread are
needed. This gives us an upper maximum based solely on the
use of registers of 16,384/35 = 468 threads per MP (each of
which could potentially be used to evaluate one event). The
momenta and current storage is of more concern. As we will
see in the next section, for the evaluation of the n-gluon ma-
trix element, we need to store n × (n + 1)/2 four-vectors in
single (float) precision. This requires 8 × n × (n + 1) bytes
of shared memory per event on the MP.2 The resulting max-
imum number of events per MP as a function of the number
of gluons is given in Table 1. Note that up to 44-gluon scat-
tering can be evaluated on the MP (albeit with only one event
per MP). Beyond 44 gluons the shared memory is too small
to store all the required four-vectors.

2A bit of calculus shows that if we have to store n × (n + 1)/2 real-
valued four-vectors in single precision we need 4 × 4 × n × (n + 1)/2
bytes of shared memory.

Eur. Phys. J. C (2011) 71:1703 Page 3 of 13

3 The implementation of the thread-scalable algorithm

Now that we have determined the optimal running config-
uration, i.e. the number of events per MP, we can imple-
ment the algorithm. We will describe the implementation
of the THREADED EVENTS SIMULATOR MC, which we
name TESS MC, for the NVIDIA Tesla chip.3 As we have
many threads available per event, we will use these threads
to speed up the MC. In Fig. 1 we show the thread usage dur-
ing different stages of the event generator for a 2 → n gluon
process. The fraction of the evaluation time spent in each
stage depends on the gluon multiplicity. For 4 gluons, we get
20%, 20%, 50% and 0% for the RAMBO, PS-weight, ME-
weight and the epilogue phases, respectively. For 12 gluons,
the time consumption divides up into 2%, 18%, 75% and 4%
for the four phases.

The initialization phase (not shown in Fig. 1) consists of
starting up the kernel on the GPU. This is taken care of by
the CUDA run-time code and does essentially not depend
on the number of threads it has to spawn. However it is a
significant part when the total kernel time is small, as is for
the 4-gluon case.

The kernel starts initiating the unit-weight phase-space
generator RAMBO. On the CPU this algorithm grows lin-
early with n as we have to construct the n − 2 outgoing
momenta. On the GPU we can employ n − 2 threads to si-
multaneously generate the outgoing momenta, making the
RAMBO code in practice independent of n.4

After the momenta are generated, we have to calculate the
strong coupling constant, the parton density functions and
the observables. We also determine, if the event passes the
canonical cuts. If the event fails the cuts, it is only flagged
as such; the matrix-element weight will still be evaluated
as this has no effect on the overall evaluation time. This
means one can deviate from the chosen canonical cuts on
the CPU during the histogramming phase if so desired. Note
that we could in principle generate more events, which pass
the cut before starting the calculation of the matrix-element
weights. This should increase the performance of the Monte
Carlo, at the cost of additional bookkeeping.

The evaluation of the strong coupling constant and parton
density functions requires special attention. As we have used
all shared memory for the four-vector storage of the gluon
currents and momenta, we have to use the off-chip global
memory to store the parton density and strong coupling con-
stant information in the form of grids. Furthermore, interpo-
lation is required between the grid points. To facilitate this,

3The TESS MC code can be downloaded from the website: http://
vircol.fnal.gov/TESS.html.
4The RAMBO algorithm has some summation operations, which grow
linearly with n, but this time scaling is very small compared to the
overall evaluation time of the RAMBO algorithm.

Fig. 1 The thread usage for an n-gluon event as the algorithm pro-
gresses through the stages of the event generation: flat phase-space
generation, phase-space weight evaluation (including parton density
functions and αS), matrix-element evaluation and finalization phase

we use a special type of memory, the so-called texture mem-
ory. This off-chip memory was designed for graphics ap-
plications and performs hardware interpolations of the grid.
Specifically, we set up a 1-dimensional grid for the strong
coupling constant. The value of the strong coupling constant
is stored as a function of the renormalization scale at inte-
ger values of the grid. For the 2-dimensional grid used by
the parton density functions, the two dimensions are given
by the factorization scale and the parton fractions. This par-
ton density grid is directly obtained from LHAPDF [14].
After the grid initialization, the texture memory can be ac-
cessed by the GPU and its hardware will perform the ap-
propriate linear interpolation between the grid points when
accessing the grid using non-integer values. This way we
have a very fast evaluation of the strong coupling and par-
ton density functions taking only about 6% and 0.6% of the
total GPU time for 4-gluon and 12-gluon processes, respec-
tively.

The four-momenta are generated and the phase-space
weight is determined, hence we have to evaluate the matrix-
element weight next. This happens at the core of the event
generator where we use recursion relations to compute these
weights.

For this proof-of-concept program, we decided to use the
recursion relation of Ref. [18] and restricted ourselves to
the case of pure gluonic cross sections; quarks can be easily
added at a later stage without changing the event generator
in a fundamental way. The recursion relations we employ
are given by

Jμ[m, . . . , n]

= 1

K[m, . . . , n]2

(
n−1∑
i=m

[
J [m, . . . , i], J [i + 1, . . . , n]]

μ

+
n−2∑
i=m

n−1∑
j=i+1

{
J [m, . . . , i], J [i + 1, . . . , j],

J [j + 1, . . . , n]}
μ

)
, (1)

http://vircol.fnal.gov/TESS.html
http://vircol.fnal.gov/TESS.html

Page 4 of 13 Eur. Phys. J. C (2011) 71:1703

where Jμ[m, . . . , n] is a conserved four-vector current de-
pending on the external gluons {m, . . . , n}. Furthermore, we
have used the shorthand notations

Kμ[m, . . . , n] =
n∑

i=m

k
μ
i ,

[
J [{a}], J [{b}]]

μ

= 2
(
J [{a}] · K[{b}])Jμ[{b}]

− 2
(
K[{a}] · J [{b}])Jμ[{a}]

+ (
J [{a}] · J [{b}])(Kμ[{a}] − Kμ[{b}]),{

J [{a}], J [{b}], J [{c}]}
μ

= 2
(
J [{a}] · J [{c}])Jμ[{b}]

− (
J [{a}] · J [{b}])Jμ[{c}]

− (
J [{c}] · J [{b}]), Jμ[{a}],

(2)

where the external gluon labeled i has momentum k
μ
i and

polarization state Jμ[i]. These four-vectors form the ini-
tial conditions for the recursion relation. In addition to the
n momenta, the recursion relation requires n × (n − 1)/2
four-vector currents to be stored giving a total storage of
n × (n + 1)/2 four-currents per event.

The recursion relations have a polynomial complexity of
order n4 for calculating the currents [19]. By exploiting the
available threads for each event, we can reduce the algorith-
mic complexity of the BG recursion relation. The relation is
easily thread-able, which enables us to lower the polynomial
scaling of the evaluation time of the recursion relation to n3.
A full recursion for an n-gluon process is completed in n−1
steps. In the first step, we use n − 1 threads (represented
by the first of the columns in the ME-weight part of Fig. 1)
to calculate the polarization vectors {J [2], . . . , J [n]} needed
as a starting point in the recursion relation. We choose each
polarization vector as a random unit vector orthogonal to
the respective gluon momentum. By doing this, instead of
employing the conventional helicity vectors, we obtain real-
valued currents. This avoids complex multiplications and re-
duces the shared-memory usage, resulting in a significant
time gain.

After the 1-currents have been determined, we use n − 2
threads (represented by the second of the columns in
the ME-weight part of Fig. 1) to calculate the 2-currents
{J [2,3], J [3,4], . . . , J [n − 1, n]}. We continue with the
n − 1 steps until we have determined J [2,3, . . . , n] at which
point we can calculate the ordered amplitude and, hence, the
matrix-element weight. Note that because we make use of
the multiple threads we have reduced the computational ef-
fort from O(n4) to O(n3) complexity.

In principle we may be able to improve even further. The
initial O(n4) growth of the one-threaded recursion relation

to calculate the J [2,3, . . . , n] current can be reduced by
rewriting the recursion relation as

Jμ[m, . . . , n]

=
n−1∑
i=m

[(
W [i + 1, . . . , n] · J [m, . . . , i])

μ

− (
W [m, . . . , i] · J [i + 1, . . . , n])

μ

]
, (3)

where the tensor Wμν is defined as

Wμν[m, . . . , n]
= 2Jμ[m, . . . , n]Kν[m, . . . , n]

− Kμ[m, . . . , n]Jν[m, . . . , n]

+
n−1∑
i=m

(
Jμ[m, . . . , i]Jν[i + 1, . . . , n]

− Jμ[i + 1, . . . , n]Jν[m, . . . , i]). (4)

By undoing the nested summations in the second term of (1)
we have lowered the complexity of the algorithm to O(n3).
However, this is only achieved at the cost of using signifi-
cantly more storage. For each event, one would have to store
n × (n − 1)/2 tensors of dimension 4 × 4 in addition to
the n × (n + 1)/2 momenta and current four-vectors. Up
to n ≈ 10 the extra work of doing matrix multiplications
together with the fact that the relative prefactor of the n4-
algorithm is small, 1/4, compared to the n3-algorithm ac-
tually make the n3-algorithm slower than the n4-algorithm.
Moreover, the extra storage demand does not make the n3-
algorithm attractive for our GPU implementation.

From the current for n − 1 gluons we then obtain the
amplitude for the n-gluon matrix element by putting the
off-shell leg on-shell, contracting in with the final polariza-
tion vector and symmetrizing over the gluons in the current.
Specifically,

A(1, . . . , n)

=
(n−1)!∑

π

Tr
[
T aπ1 . . . T

aπn−1 T an
]
m(π1, . . . , πn−1, n), (5)

with

m(π1, . . . , πn−1, n)

= (
J [π1, . . . , πn−1] · J [n])
× K2[1, . . . , n − 1]⌋

K[1,...,n]=0. (6)

Notice that for a given phase-space point, we have to per-
form the permutation sum requiring (n − 1)! steps to ar-
rive at the full amplitude. This would immediately lead to
a factorial growth in the computer time. We can circumvent
the super-exponential sum over permutations in (5). In the

Eur. Phys. J. C (2011) 71:1703 Page 5 of 13

leading-color approximation this is easily accomplished and
the color-summed squared amplitude is given by∣∣A(1, . . . , n)

∣∣2

∼ Nn−2
C

(
N2

C − 1
)

×
(

(n−1)!∑
π

∣∣m(π1, . . . , πn−1, n)
∣∣2 + O

(
1

N2
C

))
. (7)

As we will use this matrix element in a 2 → n − 2 gluon-
scattering phase-space integration, we can use the symmetry
of the final state to remove the permutation sum over the
ordered amplitudes. In detail,

dσ(PP → n − 2 jets)

=
∫

dx1 dx2
Fg(x1)Fg(x2)

4p1 · p2

× 1

(n − 2)!
∫

d�(p1p2 → p3 · · ·pn)

×
(n−1)!∑

π

∣∣m(π1, . . . , πn−1, n)
∣∣2

=
∫

dx1 dx2
Fg(x1)Fg(x2)

4p1 · p2
(n − 1)

×
∫

d�(p1p2 → p3 · · ·pn)
∣∣m(1, σ2, . . . , σn)

∣∣2
, (8)

where p1 = x1P1, p2 = x2P2, the parton density function is
given by Fg(x), d� is the phase-space integration measure
and {σ2, . . . , σn} is a permutation of the list {2, . . . , n} as-
signed randomly for each MC phase-space point evaluation.

Eventually, in the very last step of our threaded event sim-
ulation all the results are put together and returned to the
CPU for processing.

By using the TESS MC, we can evaluate the differential
n-jet cross sections in the leading-color approximation. The
algorithm is of polynomial complexity and scales as n3 with
the number n of gluons.

4 A numerical study of the threaded events simulator

The first issue to study is the timing behavior of the TESS

MC. We show our results for several gluon multiplicities in
Fig. 2 where we plot the GPU timing as a function of events
per MP (up to the respective maximum number of events per
MP as determined earlier in Sect. 2 and given in Table 1). In
a sweep each MP will evaluate a number of events in par-
allel using the threads. In principle the sweep time should
be independent of the number of events evaluated by each
MP as long as the shared-memory constraints are not ex-
ceeded, cf. Table 1. However, we have to execute a substan-
tial amount of transcendental function calls per event, which

induces some queuing at the special-function units each MP
uses for evaluating these functions. This queuing effect will
increase as the number of events per MP rises and, hence,
lead to a slower execution of the sweep. In Fig. 2, one can
see this complicated timing behavior, which is controlled
by the GPU hardware. As discussed the overall evaluation
time increases with the number of events per MP, see the
red curves in the plots. In fact, the increase of the overall
evaluation time is overcome by the gain we achieve in evalu-
ating more events per MP. The more relevant quantity there-
fore is the evaluation time per event, defined as the GPU
evaluation time divided by the total number of generated
events. As clearly indicated by the blue curves in Fig. 2, the
time consumption per event steadily decreases as the num-
ber of events per MP increases. The best performance will
be achieved by using the maximal number of events avail-
able per MP.

Now that we have determined the optimal running condi-
tions, we give in Table 2 the evaluation time per event on the
GPU compared to the evaluation time of the same algorithm
when executed on the CPU.5 As can be seen the speed-up in
evaluation time is substantial, ranging from almost a factor
of 300 for 4-gluon processes to a factor of around 150 for 12-
gluon processes. Note that the speed-up is completely due to
the fact that we evaluate in parallel 3060 and 390 events for
the 4- and 12-gluon case, respectively. Because of the sub-
stantial time gains, a single GPU can replace a large grid of
hundreds of CPUs.

As one example for rather unoptimized GPU code run-
ning, we have tested the performance of executing the events
on the GPU sequentially: using only one event per sweep
results in an event evaluation time, which is slower than
the corresponding CPU evaluation time as given in Table 2.
In particular, we found factors of 10 and 2 for the 4- and
12-gluon computations, respectively. Speaking of code op-
timization there are many factors affecting the performance
of GPU computing. We tried to integrate the capabilities of
the Tesla chip and CUDA framework into the program de-
sign. We however did not go as far as to optimize the code to
exploit—instead of n − 1 threads per event (cf. Fig. 1)—all
available threads per event as shown in Table 2.

Also of interest is the scaling behavior of the algorithm.
As expected, on the CPU it is simply polynomial scaling
with a factor of 4 in the limit of a large number of gluons.
We see from the table that this scaling is setting in quickly.
The GPU algorithm scales with a factor of 3 as discussed
in Sect. 3. However, as the number of gluons increases, the
number of events per MP decreases. This makes the timing

5Beside holding the NVIDIA GPU Tesla chip, the workstation, which
we used for our studies, comes with a quadruple core 3 GHz processor
of the type AMD Phenom™ II X4 940. Here and elsewhere in this
section we refer to this specific model when we mention the CPU.

Page 6 of 13 Eur. Phys. J. C (2011) 71:1703

Fig. 2 (Color online) The horizontal axis is the number of events per
MP in a sweep, giving a total number of 30 × (events per MP) evalu-
ated events per sweep. The red curves used together with the vertical

axes on the right indicate the total GPU time in seconds for 1,000,000
sweeps. The blue curves depict the evaluation time of one event in sec-
onds as labeled by the vertical axes on the left

Table 2 The GPU and CPU evaluation times per event, T GPU
n and

T CPU
n , given as a function of the number n of gluons for gg → (n−2)g

processes. The polynomial scaling measures are also shown, for the

GPU, Pn(3), and for the CPU, Pn(4). The Pn(m) are defined as
Pn(m) = [(n − 1)/n] × m

√
Tn/Tn−1. The rightmost column finally dis-

plays the gain Gn = T CPU
n /T GPU

n

n T GPU
n (s) Pn(3) T CPU

n (s) Pn(4) Gn

4 2.975 × 10−8 8.753 × 10−6 294

5 4.438 × 10−8 0.91 1.247 × 10−5 0.87 281

6 8.551 × 10−8 1.03 1.966 × 10−5 0.93 230

7 2.304 × 10−7 1.19 3.047 × 10−5 0.96 132

8 3.546 × 10−7 1.01 4.736 × 10−5 0.98 133

9 4.274 × 10−7 0.94 7.263 × 10−5 0.99 170

10 6.817 × 10−7 1.05 1.044 × 10−4 0.99 153

11 9.750 × 10−7 1.02 1.529 × 10−4 1.00 157

12 1.356 × 10−6 1.02 2.129 × 10−4 1.00 158

Eur. Phys. J. C (2011) 71:1703 Page 7 of 13

more dependent on specific hardware issues. As can be seen
from Table 2 the polynomial scaling is trending towards a
factor of 3.

Given the fast evaluation of events, we can easily gener-
ate O(1011) events for the calculation of the LO cross sec-
tions. With these large numbers of generated events, one has
to carefully consider the performance of the random num-
ber generators. In our case this should cause no issues, since
the number of generated random numbers is of the order
of the square root of the generator’s cycle length. How-
ever, as we average over O(1011) numbers, care has to be
taken concerning the loss of precision, which would result
in a systematic underestimation of the cross section. This
is demonstrated in the first graph of Fig. 3 where we have
used a single-precision summation to calculate the 4-gluon
cross section. As can be seen the effect becomes dramatic
as the number of sweeps is rising and we end up with a
totally wrong determination of the cross section. We avoid
this problem by using the Kahan summation algorithm [21].
All other graphs of the figure are produced by following
this procedure. These additional graphs display the conver-
gence of the cross section estimates including their respec-
tive mean standard deviation as a function of the number of
GPU sweeps. The vertical axis has been normalized to the
respective best estimate of the cross section; all of which are
listed in Table 3. For this study, we have used RAMBO as
the momenta generator, therefore, a severe under-sampling
of small phase-space regions with large weights may oc-
cur especially for larger gluon multiplicities. Because the
RAMBO phase-space generation is flat and does not re-
flect the scattering amplitudes’ strong dipole structure, such
under-sampling effects are expected and cause the peaking
behavior of our cross section estimates. Even with O(1010)

phase-space points an estimate of the 12-gluon cross section
using the RAMBO event generator is quite unreliable and
the mean standard deviation error estimate does not fully re-
flect the true uncertainty. In a further development step, one
may implement a phase-space generator like SARGE [22],
which is capable of adapting to the QCD antenna struc-
tures as occurring in the matrix elements. As pointed out
in Ref. [6], this would resolve the phase-space integration
issues we have seen here.

The convergence issues reflected in Fig. 3 should be
taken into account when interpreting the uncertainties of
our best cross section estimates, which are listed in Table 3.
For these cross section calculations of gg → (n − 2)g scat-
tering processes at a center-of-mass energy of 14 TeV, we
have used the CTEQ6L1 parton density function set [23]
as implemented in LHAPDF [14] with a fixed renormaliza-
tion and factorization scale taken at MZ = 91.188 GeV. For
the jet cuts, we have chosen p

jet
T > 20 GeV, |ηjet| < 2.5 and

�Rjet–jet > 0.4. The cut efficiencies for different numbers
n of gluons can be read off Table 3. Employing this set of

cuts we were also able to verify the jet production cross sec-
tions that we have produced using COMIX with the results
reported in Ref. [6]. To have a stringent comparison, we ran
COMIX [6] for pure gluon scatterings as provided within
SHERPA [24] version 1.2.3 yielding LO cross sections that
take the full color dependence into account. These results
are also listed in the table; for the 4-gluon and 5-gluon pro-
cesses, they can be directly compared to the cross section
estimates obtained with the TESS MC on the GPU, since the
leading-color approximation already gives the exact result.
The agreement is found to be satisfactory.

While the GPU code will evolve over the coming years,
partly due to new hardware developments, it is of some in-
terest to do a snapshot performance comparison of the GPU
code with a highly optimized, state-of-the-art CPU code.
Again our choice is to use the parton-level event genera-
tor COMIX [6] run in single-thread mode on a quadruple
core AMD Phenom™ II X4 940 (3 GHz) processor. We also
have utilized the option that in the SHERPA framework the
matrix-element generation of COMIX can be combined with
a RAMBO-like phase-space integration. As the quantity we
base the comparison on, we choose the total computation
time needed to reach a certain precision in evaluating the
cross sections as listed in Table 3. Our results are shown
in Table 4 with the benchmark precision taken from the re-
spective GPU calculation. The values marked by a “∗” were
extracted from runs terminated before completion; they are
rough estimates of how long the integration would have
taken if forced to reach the target precision. Some num-
bers only represent lower bounds taken from Monte Carlo
integrations with uncertainties larger than the benchmarks.
From Table 4 we see faster evaluations being accomplished
by the CPU codes for the processes lowest in multiplicity.
Because of their simplicity, obviously in our case it is im-
pedimental to deal with the extra overhead of steering the
GPU calculation from the CPU. For medium multiplicities,
the GPU computations are faster by factors of a few or com-
parable in speed with the COMIX calculations while down-
grading from the COMIX-specific to a RAMBO-like phase-
space generation of the gluon momenta results in manifestly
slower evaluation times for n ≥ 6 gluons. For large gluon
multiplicities (n ≥ 11), the values for the CPU run times turn
hopeless and one in fact clearly benefits from performing
the cross section calculations on the GPU. However, for two
reasons, the numbers for the computation time ratios need
to be interpreted carefully: (i) CPU codes can be designed
to make use of CPU multi-threading and (ii) for the same
reason as already discussed above, the problematic conver-
gence behavior of the RAMBO-like phase-space generation
leads to larger than ordinarily expected uncertainties on the
ratios of Table 4.

We show differential distributions in Fig. 4. To obtain
them we again used 109 sweeps where, for a certain gluon

Page 8 of 13 Eur. Phys. J. C (2011) 71:1703

Fig. 3 The number of sweeps versus several gg → (n − 2) g cross
sections normalized to their respective best cross section estimates as
given in Table 3. The error is the mean standard deviation. The plot in

the top left pane is an example of false cross section determination, if
one does not rely on Kahan summation

Eur. Phys. J. C (2011) 71:1703 Page 9 of 13

Table 3 The cross sections σn

for gg → (n − 2)g and their
mean standard deviations in pb
as calculated by the TESS MC
using 109 sweeps. The two
columns to the right show the
total number of generated events
and the number of events
passing the jet cuts. For
comparison, the cross sections
σ COMIX

n in pb that were
computed by COMIX [6] as
implemented in SHERPA [24]
version 1.2.3 are also given.
Note that the tree-level matrix
elements generated by COMIX

encode the full color
dependence

n σn (pb) [σ COMIX
n (pb)] Ngenerated/1010 Naccepted/1010

4 (2.32421 ± 0.00047) × 108 30.6 19.6848

4 [(2.32584 ± 0.00047) × 108]

5 (1.4353 ± 0.0011) × 107 20.4 11.2939

5 [(1.4348 ± 0.0011) × 107]

6 (2.84780 ± 0.00096) × 106 14.4 6.98918

6 [(2.85714 ± 0.00097) × 106]

7 (6.356 ± 0.012) × 105 10.8 4.49985

7 [(6.422 ± 0.012) × 105]

8 (1.608 ± 0.011) × 105 8.40 2.93316

8 [(1.670 ± 0.011) × 105]

9 (4.38 ± 0.11) × 104 6.60 1.88182

9 [(4.97 ± 0.13) × 104]

10 (1.193 ± 0.024) × 104 5.40 1.22356

10 [(1.489 ± 0.027) × 104]

11 (3.550 ± 0.020) × 103 4.50 0.788017

11 [(4.80 ± 0.13) × 103]

12 (9.64 ± 0.74) × 102 3.90 0.513041

12 [(17.7 ± 3.1) × 102]

Table 4 The total computation times τn in minutes needed to obtain
the LO gg → (n − 2) g cross sections with accuracies as given in Ta-
ble 3 when using the TESS and COMIX [6] Monte Carlo programs.
Note that the integration (CPU) times marked by ∗ are taken from
projections in runs terminated before the target precision was reached.
Only lower bounds determined with ∼3.1, ∼4.8 and ∼2.3 times target
precision are shown for the n = 10, n = 11 and n = 12 cases, respec-
tively. The SHERPA [24] event generator version 1.2.3 was deployed to
run COMIX and get the LO cross sections, which include the full color
information. The times given in square brackets refer to using COMIX

matrix elements together with a RAMBO-like phase-space integration
as opposed to the default treatment in COMIX where the phase-space
integration has been optimized to be conform to the matrix-element
generation. The rightmost column shows the ratios with respect to the
computation time of the TESS Monte Carlo. COMIX was run on a sin-
gle AMD Phenom™ II X4 940 (3 GHz) processor

n τ TESS
n (min.) τ COMIX

n,[RAMBO] (min.) τ COMIX
n,[RAMBO]/τ TESS

n

4 151.7 40.83 [103.5] 0.27 [0.68]
5 150.9 29.87 [113.1] 0.20 [0.75]
6 205.2 1540 [13500∗] 7.50 [66∗]
7 414.7 434.8 [11500∗] 1.05 [28∗]
8 496.4 278.3 [2580∗] 0.56 [5.2∗]
9 470.1 640.4 [8711] 1.36 [18.5]

10 613.5 7538 [>62950] 12.3 [>102]
11 731.3 >61850 >84

12 881.4 >52350 >59

multiplicity, the total number of generated events can be
read off Table 3. We kept most of the input parameters un-
altered except for the jet cuts, which we changed to p

jet
T >

60 GeV, |ηjet| < 2.0 and �Rjet–jet > 0.4, and the choice of
the renormalization and factorization scales, which we de-
cided to set dynamically using HT as a scale. On the right
hand side of Fig. 4 we show for 3, 5, 7, 9 gluon jets in
the final state the normalized distributions for the HT ob-
servable and the minimum R-separation, Rmin, which we
define through the jet–jet pair being closest in R-space,
Rmin = min{�Rij }. As can be seen smooth distributions
are easily obtained using the RAMBO phase-space genera-
tor. They are normalized to the total cross sections, which
have been calculated by TESS as

σ5 = (6.97838 ± 0.00044) × 104 pb,

σ7 = (4.9761 ± 0.0043) × 102 pb,

σ9 = (4.532 ± 0.044) pb,

σ11 = (4.51 ± 0.19) × 10−2 pb.

(9)

On the left hand side of Fig. 4 we have added profile plots
displaying the relative gauge invariance versus the decimal
logarithm of the matrix-element weight. Specifically, we

Page 10 of 13 Eur. Phys. J. C (2011) 71:1703

Fig. 4 Left panels: the profile plots of the relative gauge invariance
as a function of the decimal logarithm of the matrix-element weight,
log10 WME; center panels: the normalized HT distributions and right

panels: the normalized minimum R-separations between pairs of jets.
All of which is shown for gg → (n−2)g scatterings at a 14 TeV center-
of-mass energy for n = 5,7,9,11

Eur. Phys. J. C (2011) 71:1703 Page 11 of 13

Fig. 5 The ratio (σ TESS
5 ×dσ COMIX

5 /dX)/(σ COMIX
5 ×dσ TESS

5 /dX)−1
for the 5-gluon X = HT (left panel) and X = Rmin distributions. The
Rmin variable is defined by the smallest separation in R-space of any

pair of jets. The mean standard deviation error bars of the COMIX cal-
culation are also shown

show the average

∣∣K[1] · J [2, . . . , n] ∣∣2∣∣J [1] · J [2, . . . , n] ∣∣2

and its mean standard deviation as a function of the matrix-
element weight

WME = ∣∣m(1,2, . . . , n)
∣∣2

= ∣∣(J [1] · J [2, . . . , n]) × K2[2, . . . , n]∣∣2
. (10)

The behavior is as expected; for large weights, we see gauge
cancellations up to float precision. For small weights, the
gauge cancellations are less precise. However, these small-
weight events are not important since they do not contribute
to the calculation of the observables.

Finally, in Fig. 5 we compare our results to the results ob-
tained with the SHERPA event generator [24] version 1.2.0
where the tree-level matrix elements and phase-space in-
tegrators again have been generated by COMIX [6]. For
this comparison, we use both the HT and Rmin 5-gluon
distributions and we fix the renormalization and factor-
ization scale through MZ = 91.118 GeV to avoid any is-
sues resulting from slight differences in the evolution codes
for running scales between the two MCs. Furthermore, to
have a sole shape comparison, we plot the ratio (σ TESS

5 ×
dσ COMIX

5 /dX)/(σ COMIX
5 × dσ TESS

5 /dX)− 1 with the results
shown in Fig. 5 and X being the observable in considera-
tion. Note that for the minimum R-separation distribution,
we find excellent agreement with the SHERPA prediction
given by COMIX. For the HT distribution, we have to re-
alize that the cross section spans 28 orders of magnitude. As

COMIX relies on importance sampling, it only sparsely pop-
ulates the tail of the distribution. This leads to large uncer-
tainties at large values of HT and, in these regions, COMIX

will hence tend to underestimate the value for the cross sec-
tion.

5 Conclusions and outlook

In our first exploration of the potential of using multi-
threaded GPU-based workstations for Monte Carlo pro-
grams, we obtained very encouraging results. We imple-
mented the entire TESS Monte Carlo on the GPU chip;
the only off-chip usage occurs through utilizing the texture
memory for the evaluation of the parton density function and
the strong coupling constant. The GPU global memory is
solely used for transferring the Monte Carlo results to the
CPU memory. At this exploratory phase of the project, we
limited ourselves to the calculation of leading-color leading-
order n-gluon matrix elements. With respect to the CPU-
based implementation of our Monte Carlo we have found
impressive speed-ups in the computations reaching from
O(300) for PP → 2 jets to O(150) for PP → 10 jets. In
a comparison with a (CPU-based) modern parton-level gen-
erator such as COMIX [6] we notice that the calculation of
cross sections can become more efficient for more complex
processes like gg → 4g and larger multiplicities in the final
state. The full potential of the GPU calculation unfolds it-
self when one deals with the determination of cross sections
for gg → ≥ 9g cross sections; here the benefits with re-
spect to the CPU-based evaluations are huge. Nevertheless,
the results, in particular, the uncertainties of the phase-space

Page 12 of 13 Eur. Phys. J. C (2011) 71:1703

integration in TESS should be interpreted with some care,
since the employed RAMBO algorithm is very sensitive to
the occurrence of suddenly largely fluctuating weights.

Given these results we are encouraged to further develop
the TESS Monte Carlo by including quarks, vector bosons
and subleading color contributions. We are also planning to
implement on the GPU a dipole-based phase-space gener-
ator like SARGE as an alternative to the unit-weight phase-
space generator RAMBO. This will avoid the under-sampling
issues in high jet-multiplicity final states and render a perfor-
mance comparison to efficient CPU-based tree-level Monte
Carlos more meaningful. These improvements will result in
a full leading-order parton-level event generator, which has
the potential to be two orders of magnitude faster than exist-
ing leading-order parton-level generators.

More importantly, a GPU-based Monte Carlo may be
used as the generator for the real corrections in an auto-
mated next-to-leading order parton-level MC generator. The
virtual corrections can be calculated by using a generalized-
unitarity based method [25–33].

Finally, GPU chips for numerical evaluations are still
evolving rapidly. This will lead to additional significant
speed-ups over CPU-based Monte Carlos in the coming
years. The next generation GPUs are already on the market:
the NVIDIA® Fermi™ chip (released in Fall 2010) comes
with improvements over the Tesla chip such as 32 kb in-
stead of 16 kb memory for registers, 48 kb instead of 16 kb
shared memory and support for double-precision calcula-
tions. Through a unified memory pointer the Fermi chip has
full support for the C++ programming language. Running
TESS as is in the new environment will lead to a perfor-
mance increase varying between 1.3 and 2.0 owing to the
faster clock rate and more special-function units. In addi-
tion and with some effort, the memory layout of the pro-
gram could be adjusted to make use of the increase in shared
memory and hence run more events in parallel. This will
give significant additional speed-ups.

Acknowledgements We want to thank Jim Simone for suggesting
the Tesla GPU for use in event generators. We thank the High-Perfor-
mance Computing Department at Fermilab for giving us support and
access to the LQCD Tesla-based workstations.

We would also like to thank Patrick Fox, who came up with the
name “TESS” and suggested it to us as the name for our Monte Carlo
program.

Fermilab is operated by Fermi Research Alliance, LLC, under con-
tract DE-AC02-07CH11359 with the United States Department of En-
ergy.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: The GPU architecture

Here we give a rough overview of the CUDA framework.
We, however, cannot discuss all of the many more subtleties,
which can be detrimental to the performance, if not aware of.

The CUDA framework is build to utilize the NVIDIA®

Tesla™ GPUs. To program the GPUs efficiently, one needs
to have a global understanding of their underlying structure.
The programming model is build around three concepts:
threads, blocks and grids. Threads are exactly what one
expects—a single thread of code execution. These threads
are the basis of the parallelization with the same thread be-
ing executed multiple times working on different data, but
simultaneously. Identical threads are organized in blocks
where each thread in a block has a unique thread index to
specify what data to work on. Identical blocks are organized
in a grid where each block has a unique block index. The
reason for this extra hierarchy is that threads within one
block are always executed on a single multi-processor (MP).
Therefore, threads within a block can share information us-
ing the shared memory and can synchronize their execution.
Threads in different blocks may be executed on different
MPs and are therefore unable to share information or syn-
chronize execution. A single MP is able to execute more
than one block if the total number of threads, the total regis-
ter count and the total amount of shared memory are within
the limits of the MP.

One MP consists of 8 streaming processors, or “CUDA
cores”, and 2 special-function units (SFUs).6 It is possible
to run up to 1024 threads on one MP. In a single instruction
multiple data (SIMD) design, a CUDA core can execute 32
threads simultaneously. The 32 threads executing on a sin-
gle CUDA core are called a warp. Within a warp every in-
struction needs to be the same. Branchings, which diverge
within a warp are therefore not executed concurrently, but
sequentially. So, if part of the threads in a warp branch and
another part does not, then the chip will first calculate one
of the two code paths and when finished the other. Diverg-
ing branchings within warps are therefore expensive as op-
posed to those in threads belonging to different warps that
are free. This is important to keep in mind while design-
ing code. Note that each MP has only 2 SFUs; calculating
special functions like logarithms can easily result in a bot-
tleneck, because the threads have to share the SFUs.

The other important piece of the architecture is the mem-
ory structure. The GPU has its own memory which essen-
tially is large and of the order of gigabytes. This memory

6The total number of streaming processors is 8 × #(MP). The number
of MPs can vary between cards, but often, as well as in our case, there
are 30 MPs on a card—10 TPCs times 3 MPs per TPC (Thread Pro-
cessing Clusters). From a programmer’s point of view, it is sufficient
to know how a single core performs considering the fact that 8 cores
have to share 2 SFUs which may result in performance slow-downs.

Eur. Phys. J. C (2011) 71:1703 Page 13 of 13

cannot be accessed directly by the CPU, but must be copied
to and from CPU memory using the CUDA API functions.
This is the only way to exchange information between CPU
and GPU. This copying can easily slow down the program,
hence, it is important to minimize copying in designing
the program. Furthermore, the bandwidth between the GPU
memory and the GPU chip is limited; thus, if all threads ask
for global memory, a bottleneck is created easily. The sec-
ond type of memory is provided by the (32 bit) registers;
these are local to the thread and there is a total of 16 Kb reg-
isters available to be divided among the threads. These reg-
isters are fast, so one wants to store as much information as
possible in registers. Design trade-offs are to be made here:
more registers per thread means less total threads per MP.
The third type of memory is shared memory. This memory
with total size of 16 Kb is much like registers, it is fast, but
shared among the threads in the same block. Using shared
memory of course comes with the usual synchronization
problems when different threads access the same element.

References

1. T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357 (1994).
arXiv:hep-ph/9401258

2. F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 0202, 044
(2002). arXiv:hep-ph/0109036

3. P.D. Draggiotis, R.H.P. Kleiss, C.G. Papadopoulos, Eur. Phys. J.
C 24, 447 (2002). arXiv:hep-ph/0202201

4. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J.
High Energy Phys. 0307, 001 (2003). arXiv:hep-ph/0206293

5. E. Boos et al. (CompHEP Collaboration), Nucl. Instrum. Methods
A 534, 250 (2004). arXiv:hep-ph/0403113

6. T. Gleisberg, S. Höche, J. High Energy Phys. 0812, 039 (2008).
arXiv:0808.3674 [hep-ph]

7. W.T. Giele, Z. Kunszt, K. Melnikov, J. High Energy Phys. 0804,
049 (2008). arXiv:0801.2237 [hep-ph]

8. C.F. Berger et al., Phys. Rev. D 78, 036003 (2008).
arXiv:0803.4180 [hep-ph]

9. A. van Hameren, C.G. Papadopoulos, R. Pittau, J. High Energy
Phys. 0909, 106 (2009). arXiv:0903.4665 [hep-ph]

10. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni,
R. Pittau, arXiv:1103.0621 [hep-ph]

11. See the websites http://www.nvidia.com/object/personal-
supercomputing.html and http://www.nvidia.com/object/product_
tesla_c1060_us.html for further information

12. See the website http://www.nvidia.com/object/cuda_home.html
for further information

13. R. Kleiss, W.J. Stirling, S.D. Ellis, Comput. Phys. Commun. 40,
359 (1986)

14. M.R. Whalley, D. Bourilkov, R.C. Group, arXiv:hep-ph/0508110
15. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer,

Eur. Phys. J. C 66, 477–492 (2010). arXiv:0908.4403 [physics.
comp-ph]

16. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer,
Eur. Phys. J. C 70, 513–524 (2010). arXiv:0909.5257 [hep-ph]

17. H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity Am-
plitude Subroutines for Feynman diagram evaluations, KEK-91-
11

18. F.A. Berends, W.T. Giele, Nucl. Phys. B 306, 759 (1988)
19. R. Kleiss, H. Kuijf, Nucl. Phys. B 312, 616 (1989)
20. P. Draggiotis, R.H.P. Kleiss, C.G. Papadopoulos, Phys. Lett. B

439, 157 (1998). arXiv:hep-ph/9807207
21. W. Kahan, Further remarks on reducing truncation errors. Com-

mun. ACM 8(1), 40 (1965)
22. P.D. Draggiotis, A. van Hameren, R. Kleiss, Phys. Lett. B 483,

124 (2000). arXiv:hep-ph/0004047
23. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky,

W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:
hep-ph/0201195

24. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann,
F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009).
arXiv:0811.4622 [hep-ph]

25. R.K. Ellis, K. Melnikov, G. Zanderighi, J. High Energy Phys.
0904, 077 (2009). arXiv:0901.4101 [hep-ph]

26. C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde,
T. Gleisberg, H. Ita, D.A. Kosower et al., Phys. Rev. Lett. 102,
222001 (2009). arXiv:0902.2760 [hep-ph]

27. K. Melnikov, M. Schulze, J. High Energy Phys. 0908, 049 (2009).
arXiv:0907.3090 [hep-ph]

28. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau,
M. Worek, J. High Energy Phys. 0909, 109 (2009). arXiv:0907.
4723 [hep-ph]

29. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys.
Rev. Lett. 104, 162002 (2010). arXiv:1002.4009 [hep-ph]

30. C.F. Berger, Z. Bern, L.J. Dixon, F.F. Cordero, D. Forde, T. Gleis-
berg, H. Ita, D.A. Kosower et al., Phys. Rev. D 82, 074002 (2010).
arXiv:1004.1659 [hep-ph]

31. K. Melnikov, M. Schulze, Nucl. Phys. B 840, 129–159 (2010).
arXiv:1004.3284 [hep-ph]

32. R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, J. High En-
ergy Phys. 1011, 050 (2010). arXiv:1008.5313 [hep-ph]

33. C.F. Berger, Z. Bern, L.J. Dixon, F.F. Cordero, D. Forde, T. Gleis-
berg, H. Ita, D.A. Kosower et al., Phys. Rev. Lett. 106, 092001
(2011). arXiv:1009.2338 [hep-ph]

http://arxiv.org/abs/arXiv:hep-ph/9401258
http://arxiv.org/abs/arXiv:hep-ph/0109036
http://arxiv.org/abs/arXiv:hep-ph/0202201
http://arxiv.org/abs/arXiv:hep-ph/0206293
http://arxiv.org/abs/arXiv:hep-ph/0403113
http://arxiv.org/abs/arXiv:0808.3674
http://arxiv.org/abs/arXiv:0801.2237
http://arxiv.org/abs/arXiv:0803.4180
http://arxiv.org/abs/arXiv:0903.4665
http://arxiv.org/abs/arXiv:1103.0621
http://www.nvidia.com/object/personal-supercomputing.html
http://www.nvidia.com/object/personal-supercomputing.html
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://www.nvidia.com/object/cuda_home.html
http://arxiv.org/abs/arXiv:hep-ph/0508110
http://arxiv.org/abs/arXiv:0908.4403
http://arxiv.org/abs/arXiv:0909.5257
http://arxiv.org/abs/arXiv:hep-ph/9807207
http://arxiv.org/abs/arXiv:hep-ph/0004047
http://arxiv.org/abs/arXiv:hep-ph/0201195
http://arxiv.org/abs/arXiv:hep-ph/0201195
http://arxiv.org/abs/arXiv:0811.4622
http://arxiv.org/abs/arXiv:0901.4101
http://arxiv.org/abs/arXiv:0902.2760
http://arxiv.org/abs/arXiv:0907.3090
http://arxiv.org/abs/arXiv:0907.4723
http://arxiv.org/abs/arXiv:0907.4723
http://arxiv.org/abs/arXiv:1002.4009
http://arxiv.org/abs/arXiv:1004.1659
http://arxiv.org/abs/arXiv:1004.3284
http://arxiv.org/abs/arXiv:1008.5313
http://arxiv.org/abs/arXiv:1009.2338

	Thread-scalable evaluation of multi-jet observables
	Introduction
	Thread-scalable algorithms for event generators
	The implementation of the thread-scalable algorithm
	A numerical study of the threaded events simulator
	Conclusions and outlook
	Acknowledgements
	Open Access
	Appendix: The GPU architecture
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

