47 research outputs found

    FLAME GPU 2: a framework for flexible and performant agent based simulation on GPUs

    Get PDF
    Agent based modelling (ABM) offers a powerful abstraction for scientific study in a broad range of domains. The use of agent based simulators encourages good software engineering design such as separation of concerns, that is, the uncoupling of the model description from its implementation detail. A major limitation in current approaches to ABM simulation is that of the trade off between simulator flexibility and performance. It is common that highly optimised simulations, such as those which target graphics processing units (GPU) hardware, are implemented as standalone software. This work presents a software framework (FLAME GPU 2) which balances flexibility with performance for general purpose ABM. Methods for ensuring high computational efficacy are demonstrated by, minimising data movement, and ensuring high device utilisation by exploiting opportunities for concurrent code execution within a model and through the use of ensembles of simulations. A novel hierarchical sub-modelling approach is also presented which can be used to model certain types of recursive behaviours. This feature is shown to be essential in providing a mechanism to resolve competition for resources between agents within a parallel environment which would otherwise introduce race conditions. To understand the performance characteristics of the software, a benchmark model with millions of agents is used to explore the use of simulation ensembles and to parametrically investigate concurrent code execution within a model. Performance speedups are demonstrated of 3.5 and 10 respectively over a baseline GPU implementation. Our hierarchical sub-modelling approach is used to demonstrate the implementation of a recursive algorithm to resolve competition of agent movement which occurs as a result of agent desire to simultaneously occupy discrete areas high in a ‘resource’. The algorithm is used to implement a classical socio-economics model, Sugarscape, with populations of up to 16M agents

    Large-scale production of cellulose-binding domains : adsorption studies using CBD-FITC conjugates

    Get PDF
    A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial nzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBDfluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.Fundação para a Ciência e a Tecnologia (FCT

    Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation

    Get PDF
    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei
    corecore