4,002 research outputs found

    Non-Standard Fermion Propagators from Conformal Field Theory

    Full text link
    It is shown that Weyl spinors in 4D Minkowski space are composed of primary fields of half-integer conformal weights. This yields representations of fermionic 2-point functions in terms of correlators of primary fields with a factorized transformation behavior under the Lorentz group. I employ this observation to determine the general structure of the corresponding Lorentz covariant correlators by methods similar to the methods employed in conformal field theory to determine 2- and 3-point functions of primary fields. In particular, the chiral symmetry breaking terms resemble fermionic 2-point functions of 2D CFT up to a function of the product of momenta. The construction also permits for the formulation of covariant meromorphy constraints on spinors in 3+1 dimensions.Comment: 15 pages, Latex, LMU-TPW 94-1

    Optimization of photomixers and antennas for continuous-wave terahertz emission

    Get PDF
    We have studied terahertz emission from interdigitated finger photomixers coupled to planar antenna structures. Using both pulsed and continuous-wave excitation, polarization measurements reveal that the antenna design dominates the properties of the radiated output at frequencies below 0.6 THz, while the efficiency at higher frequencies is additionally dependent on the design of the photomixer fingers. We have produced terahertz maps of the device, characterizing the photomixer by measuring the generated power as a function of the excitation position. Together, these measurements have allowed us to understand better the distinct roles of the photomixer and antenna in emission at different fre

    The cluster environments of radio-loud AGN

    Get PDF
    Copyright IAURadio-loud AGN play an important role in galaxy evolution. We need to understand their properties, and the processes that affect their behaviour in order to model galaxy formation and development. We here present preliminary results of an investigation into the cluster environments of radio galaxies. We have found evidence of a strong correlation between radio luminosity and environment richness for low excitation radio galaxies, and no evidence of evolution of the environment with redshift. Conversely, for high excitation radio galaxies, we found no correlation with environment richness, and tentative evidence of evolution of the cluster environment

    Whisker-object contact speed affects radial distance estimation

    Get PDF
    Whiskered mammals such as rats are experts in tactile perception. By actively palpating surfaces with their whiskers, rats and mice are capable of acute texture discrimination and shape perception. We present a novel system for investigating whisker-object contacts repeatably and reliably. Using an XY positioning robot and a biomimetic artificial whisker we can generate signals for different whisker-object contacts under a wide range of conditions. Our system is also capable of dynamically altering the velocity and direction of the contact based on sensory signals. This provides a means for investigating sensory motor interaction in the tactile domain. Here we implement active contact control, and investigate the effect that speed has on radial distance estimation when using different features for classification. In the case of a moving object contacting a whisker, magnitude of deflection can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by finding robust features for contact speed, which then informs classification of radial distance. Our results are verified on a dataset from SCRATCHbot, a whiskered mobile robot. Building whiskered robots and modelling these tactile perception capabilities would allow exploration and navigation in environments where other sensory modalities are impaired, for example in dark, dusty or loud environments such as disaster areas. © 2010 IEEE

    Dynamics of former ice lobes of the southernmost Patagonian Ice Sheet based on a glacial landsystems approach

    Get PDF
    Reconstructions of former ice masses from glacial geomorphology help to constrain the nature and timing of glaciation in relation to climatic forcing. This paper presents a new reconstruction of the glacial history of five ice lobes in southernmost South America: the BahĂ­a InĂștil − San SebastiĂĄn, Magellan, Otway, Skyring and RĂ­o Gallegos ice lobes. We use previous geomorphological mapping of glacial landforms to reconstruct former glacial limits and proglacial lakes, demarcate flow-sets from the distribution of glacial lineations, and evaluate glacial landsystem signatures and their palaeoglaciological implications. Evidence suggests that the ice lobes predominantly reflect active temperate glacial landsystems, which may have switched to polythermal systems when periods of cold-based ice developed ephemerally. This complex landsystem signature implies that the ice lobes were sensitive to regional climate variability, with active re-advances during overall retreat of the ice margins. There is also evidence for periods of fast ice flow and possible surge-like activity in the region, followed by the rapid retreat or even collapse of some of the ice lobes in association with proglacial lakes. Constraining our new reconstruction with published chronological information suggests that at least some of the ice lobes advanced before the global Last Glacial Maximum (gLGM: ca. 26.5–19 ka) during the last glacial cycle. Our new reconstruction demonstrates a more complex picture of ice dynamics than has previously been portrayed, and one in which the advance and retreat of the ice lobes was likely to have been primarily driven by changes in climate. As such, ice advances before the gLGM in the southernmost part of the Patagonian Ice Sheet are likely to indicate a wider climatic forcing at this time

    Whiskered texture classification with uncertain contact pose geometry

    Get PDF
    Tactile sensing can be an important source of information for robots, and texture discrimination in particular is useful in object recognition and terrain identification. Whisker based tactile sensing has recently been shown to be a promising approach for mobile robots, using simple sensors and many classification approaches. However these approaches have often been tested in limited environments, and have not been compared against one another in a controlled way. A wide range of whisker-object contact poses are possible on a mobile robot, and the effect such contact variability has on sensing has not been properly investigated. We present a novel, carefully controlled study of simple surface texture classifiers on a large set of varied pose conditions that mimic those encountered by mobile robots. Namely, single brief whisker contacts with textured surfaces at a range of surface orientations and contact speeds. Results show that different classifiers are appropriate for different settings, with spectral template and feature based approaches performing best in surface texture, and contact speed estimation, respectively. The results may be used to inform selection of classifiers in tasks such as tactile SLAM

    The global spread of crop pests and pathogens

    Get PDF
    AimTo describe the patterns and trends in the spread of crop pests and pathogens around the world, and determine the socioeconomic, environmental and biological factors underlying the rate and degree of redistribution of crop-destroying organisms. LocationGlobal. MethodsCurrent country- and state-level distributions of 1901 pests and pathogens and historical observation dates for 424 species were compared with potential distributions based upon distributions of host crops. The degree of saturation', i.e. the fraction of the potential distribution occupied, was related to pest type, host range, crop production, climate and socioeconomic variables using linear models. ResultsMore than one-tenth of all pests have reached more than half the countries that grow their hosts. If current trends continue, many important crop-producing countries will be fully saturated with pests by the middle of the century. While dispersal increases with host range overall, fungi have the narrowest host range but are the most widely dispersed group. The global dispersal of some pests has been rapid, but pest assemblages remain strongly regionalized and follow the distributions of their hosts. Pest assemblages are significantly correlated with socioeconomics, climate and latitude. Tropical staple crops, with restricted latitudinal ranges, tend to be more saturated with pests and pathogens than temperate staples with broad latitudinal ranges. We list the pests likely to be the most invasive in coming years. Main conclusionsDespite ongoing dispersal of crop pests and pathogens, the degree of biotic homogenization of the globe remains moderate and regionally constrained, but is growing. Fungal pathogens lead the global invasion of agriculture, despite their more restricted host range. Climate change is likely to influence future distributions. Improved surveillance would reveal greater levels of invasion, particularly in developing countries
    • 

    corecore