846 research outputs found

    OPERA data and The Equivalence Postulate of Quantum Mechanics

    Get PDF
    An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle speed arising from the Relativistic Quantum Hamilton Jacobi Equation. I show that this is in general not the case. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy--momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.Comment: 8 pages. Standard LaTex. References adde

    Observation of Parity Violation in the Omega-minus -> Lambda + K-minus Decay

    Get PDF
    The alpha decay parameter in the process Omega-minus -> Lambda + K-minus has been measured from a sample of 4.50 million unpolarized Omega-minus decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 +/- 0.19(stat) +/- 0.16(syst)]{\times}10^{-2}. This is the first unambiguous evidence for a nonzero alpha decay parameter, and hence parity violation, in the Omega-minus -> Lambda + K-minus decay.Comment: 10 pages, 7 figure

    Quantum charges and spacetime topology: The emergence of new superselection sectors

    Full text link
    In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*-algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts' cohomological analysis to the case where 1--cocycles bear non trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1-cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1-cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part resembles much what in literature are known as geometric phases. Indeed, by the very geometrical origin of the 1-cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Lorentz and CPT Violation in Neutrinos

    Get PDF
    A general formalism is presented for violations of Lorentz and CPT symmetry in the neutrino sector. The effective hamiltonian for neutrino propagation in the presence of Lorentz and CPT violation is derived, and its properties are studied. Possible definitive signals in existing and future neutrino-oscillation experiments are discussed. Among the predictions are direction-dependent effects, including neutrino-antineutrino mixing, sidereal and annual variations, and compass asymmetries. Other consequences of Lorentz and CPT violation involve unconventional energy dependences in oscillation lengths and mixing angles. A variety of simple models both with and without neutrino masses are developed to illustrate key physical effects. The attainable sensitivities to coefficients for Lorentz violation in the Standard-Model Extension are estimated for various types of experiments. Many experiments have potential sensitivity to Planck-suppressed effects, comparable to the best tests in other sectors. The lack of existing experimental constraints, the wide range of available coefficient space, and the variety of novel effects imply that some or perhaps even all of the existing data on neutrino oscillations might be due to Lorentz and CPT violation.Comment: 25 pages REVTe

    Solar Neutrinos and the Principle of Equivalence

    Get PDF
    We study the proposed solution of the solar neutrino problem which requires a flavor nondiagonal coupling of neutrinos to gravity. We adopt a phenomenological point of view and investigate the consequences of the hypothesis that the neutrino weak interaction eigenstates are linear combinations of the gravitational eigenstates which have slightly different couplings to gravity, f1Gf_1G and f2Gf_2G, f1f2<<1|f_1-f_2| << 1, corresponding to a difference in red-shift between electron and muon neutrinos, Δz/(1+z)f1f2\Delta z/(1+z) \sim |f_1 - f_2|. We perform a χ2\chi^2 analysis of the latest available solar neutrino data and obtain the allowed regions in the space of the relevant parameters. The existing data rule out most of the parameter space which can be probed in solar neutrino experiments, allowing only f1f23×1014|f_1 - f_2| \sim 3 \times 10^{-14} for small values of the mixing angle (2×103sin2(2θG)1022 \times 10^{-3} \le \sin^2(2\theta_G) \le 10^{-2}) and 1016<f1f2<101510^{-16} \stackrel{<}{\sim} |f_1 - f_2| \stackrel{<}{\sim}10^{-15} for large mixing (0.6sin2(2θG)0.90.6 \le \sin^2(2\theta_G) \le 0.9). Measurements of the 8B^8{\rm B}-neutrino energy spectrum in the SNO and Super-Kamiokande experiments will provide stronger constraints independent of all considerations related to solar models. We show that these measurements will be able to exclude part of the allowed region as well as to distinguish between conventional oscillations and oscillations due to the violation of the equivalence principle.Comment: 20 pages + 4 figures, IASSNS-AST 94/5

    Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    Get PDF
    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons and nucleons in pi, K and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consist of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure
    corecore