In which is developed a new form of superselection sectors of topological
origin. By that it is meant a new investigation that includes several
extensions of the traditional framework of Doplicher, Haag and Roberts in local
quantum theories. At first we generalize the notion of representations of nets
of C*-algebras, then we provide a brand new view on selection criteria by
adopting one with a strong topological flavour. We prove that it is coherent
with the older point of view, hence a clue to a genuine extension. In this
light, we extend Roberts' cohomological analysis to the case where 1--cocycles
bear non trivial unitary representations of the fundamental group of the
spacetime, equivalently of its Cauchy surface in case of global hyperbolicity.
A crucial tool is a notion of group von Neumann algebras generated by the
1-cocycles evaluated on loops over fixed regions. One proves that these group
von Neumann algebras are localized at the bounded region where loops start and
end and to be factorial of finite type I. All that amounts to a new invariant,
in a topological sense, which can be defined as the dimension of the factor. We
prove that any 1-cocycle can be factorized into a part that contains only the
charge content and another where only the topological information is stored.
This second part resembles much what in literature are known as geometric
phases. Indeed, by the very geometrical origin of the 1-cocycles that we
discuss in the paper, they are essential tools in the theory of net bundles,
and the topological part is related to their holonomy content. At the end we
prove the existence of net representations