351 research outputs found

    The failure to act upon important information: where do things go wrong?

    Get PDF
    Theeuwes, J.L. [Promotor

    Do engineer perceptions about automated vehicles match user trust? Consequences for design

    Get PDF
    To maximize road safety, driver trust in an automated vehicle should be aligned with the vehicle’s technical reliability, avoiding under- and over-estimation of its capabilities. This is known as trust calibration. In the study reported here, we asked how far participant assessments of vehicle capabilities aligned with those of the engineers. This was done by asking the engineers to rate the reliability of the vehicle in a specific set of scenarios. We then carried out a driving simulator study using the same scenarios, and measured participant trust. The results suggest that user trust and engineer perceptions of vehicle reliability are often misaligned, with users sometimes under-trusting and sometimes over-trusting vehicle capabilities. On these bases, we formulated recommendations to mitigate under- and over-trust. Specific recommendations to improve trust calibration include the adoption of a more defensive driving style for first-time users, the visual representation of the objects detected by the automated driving system in its surroundings in the Human Machine Interface, and real-time feedback on the performance of the technology. Action Contro

    Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation

    Full text link
    A pointlike particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the Fokker-Planck equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m->0, with a series of corrections expanded in powers of m. They are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.Comment: 13 pages, 1 figur

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3Ă—10183\times 10^{18} eV, and strong evidence for a suppression near 6Ă—10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Professionalism, Golf Coaching and a Master of Science Degree: A commentary

    Get PDF
    As a point of reference I congratulate Simon Jenkins on tackling the issue of professionalism in coaching. As he points out coaching is not a profession, but this does not mean that coaching would not benefit from going through a professionalization process. As things stand I find that the stimulus article unpacks some critically important issues of professionalism, broadly within the context of golf coaching. However, I am not sure enough is made of understanding what professional (golf) coaching actually is nor how the development of a professional golf coach can be facilitated by a Master of Science Degree (M.Sc.). I will focus my commentary on these two issues

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    • …
    corecore