7 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    State-of-the-Art Nanoclay Reinforcement in Green Polymeric Nanocomposite: From Design to New Opportunities

    No full text
    Nanoclays are layered aluminosilicate nanostructures. Depending upon the chemical composition and microscopic structure, various nanoclay types have been discovered such as montmorillonite, bentonite, kaolinite, halloysite nanoclay, etc. Nanoclays have been organically modified to develop compatibility with polymers. Polymer/nanoclay nanocomposites have prompted significant breakthroughs in the field of nanocomposite technology. Green nanocomposites form an important class of nanomaterials using naturally derived degradable materials as matrix/nanofiller. This review essentially deliberates the fundamentals and effect of nanoclay reinforcements in the green polymer matrices. Naturally derived polymers such as cellulose, starch, natural rubber, poly(lactic acid), etc. have been employed in these nanocomposites. Green polymer/nanoclay nanocomposites have been fabricated using various feasible fabrication approaches such as the solution route, melt processing, in situ polymerization, and others. The significance of the structure-property relationships in these nanomaterials, essential to attain the desired features, has been presented. Green polymer/nanoclay nanocomposites are light weight, inexpensiveness, ecofriendly, have a low cost, and enhanced indispensable physical properties. Consequently, the green polymer/nanoclay nanocomposites have found applications towards sustainability uses, packaging, membranes, and biomedical (tissue engineering, drug delivery, wound healing) sectors. However, thorough research efforts are desirable to extend the utility of the green polymer/nanoclay nanocomposites in future technological sectors

    State-of-the-Art Nanoclay Reinforcement in Green Polymeric Nanocomposite: From Design to New Opportunities

    No full text
    Nanoclays are layered aluminosilicate nanostructures. Depending upon the chemical composition and microscopic structure, various nanoclay types have been discovered such as montmorillonite, bentonite, kaolinite, halloysite nanoclay, etc. Nanoclays have been organically modified to develop compatibility with polymers. Polymer/nanoclay nanocomposites have prompted significant breakthroughs in the field of nanocomposite technology. Green nanocomposites form an important class of nanomaterials using naturally derived degradable materials as matrix/nanofiller. This review essentially deliberates the fundamentals and effect of nanoclay reinforcements in the green polymer matrices. Naturally derived polymers such as cellulose, starch, natural rubber, poly(lactic acid), etc. have been employed in these nanocomposites. Green polymer/nanoclay nanocomposites have been fabricated using various feasible fabrication approaches such as the solution route, melt processing, in situ polymerization, and others. The significance of the structure-property relationships in these nanomaterials, essential to attain the desired features, has been presented. Green polymer/nanoclay nanocomposites are light weight, inexpensiveness, ecofriendly, have a low cost, and enhanced indispensable physical properties. Consequently, the green polymer/nanoclay nanocomposites have found applications towards sustainability uses, packaging, membranes, and biomedical (tissue engineering, drug delivery, wound healing) sectors. However, thorough research efforts are desirable to extend the utility of the green polymer/nanoclay nanocomposites in future technological sectors
    corecore