87 research outputs found

    Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets

    Full text link
    An experimental overview of reactions induced by the stable, but weakly-bound nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8B, 11Be and 17F on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.Comment: 7 pages, 6 figures, Invited Talk given by C. Beck to the 10th International Conference on Nucleus-Nucleus Collisions, August 16-21, 2009 Beijing, China; Paper submitted to the NN2009 Proceedings, Nuclear Physics A (to be published

    Reaction mechanisms in the 6Li+59Co system

    Get PDF
    The reactions induced by the weakly bound 6Li projectile interacting with the intermediate mass target 59Co were investigated. Light charged particles singles and α\alpha-dd coincidence measurements were performed at the near barrier energies E_lab = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis, Continuum-Discretized Coupled-Channels calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section.Comment: 30 pages, 8 figure

    ARFIMA-GARCH modeling of HRV: Clinical application in acute brain injury

    Get PDF
    In the last decade, several HRV based novel methodologies for describing and assessing heart rate dynamics have been proposed in the literature with the aim of risk assessment. Such methodologies attempt to describe the non-linear and complex characteristics of HRV, and hereby the focus is in two of these characteristics, namely long memory and heteroscedasticity with variance clustering. The ARFIMA-GARCH modeling considered here allows the quantification of long range correlations and time-varying volatility. ARFIMA-GARCH HRV analysis is integrated with multimodal brain monitoring in several acute cerebral phenomena such as intracranial hypertension, decompressive craniectomy and brain death. The results indicate that ARFIMA-GARCH modeling appears to reflect changes in Heart Rate Variability (HRV) dynamics related both with the Acute Brain Injury (ABI) and the medical treatments effects. (c) 2017, Springer International Publishing AG

    Metodi per l'analisi non lineare di serie temporali

    No full text
    • …
    corecore