87 research outputs found
Pregnancy monitoring
International audienc
Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets
An experimental overview of reactions induced by the stable, but weakly-bound
nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8B, 11Be and 17F
on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data
on elastic scattering, total reaction cross sections, fusion processes, breakup
and transfer channels are discussed in the framework of a CDCC approach taking
into account the breakup degree of freedom.Comment: 7 pages, 6 figures, Invited Talk given by C. Beck to the 10th
International Conference on Nucleus-Nucleus Collisions, August 16-21, 2009
Beijing, China; Paper submitted to the NN2009 Proceedings, Nuclear Physics A
(to be published
Reaction mechanisms in the 6Li+59Co system
The reactions induced by the weakly bound 6Li projectile interacting with the
intermediate mass target 59Co were investigated. Light charged particles
singles and - coincidence measurements were performed at the near
barrier energies E_lab = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions
of the different competing mechanisms are discussed. A statistical model
analysis, Continuum-Discretized Coupled-Channels calculations and two-body
kinematics were used as tools to provide information to disentangle the main
components of these mechanisms. A significant contribution of the direct
breakup was observed through the difference between the experimental sequential
breakup cross section and the CDCC prediction for the non-capture breakup cross
section.Comment: 30 pages, 8 figure
ARFIMA-GARCH modeling of HRV: Clinical application in acute brain injury
In the last decade, several HRV based novel methodologies for describing and assessing heart rate dynamics have been proposed in the literature with the aim of risk assessment. Such methodologies attempt to describe the non-linear and complex characteristics of HRV, and hereby the focus is in two of these characteristics, namely long memory and heteroscedasticity with variance clustering. The ARFIMA-GARCH modeling considered here allows the quantification of long range correlations and time-varying volatility. ARFIMA-GARCH HRV analysis is integrated with multimodal brain monitoring in several acute cerebral phenomena such as intracranial hypertension, decompressive craniectomy and brain death. The results indicate that ARFIMA-GARCH modeling appears to reflect changes in Heart Rate Variability (HRV) dynamics related both with the Acute Brain Injury (ABI) and the medical treatments effects. (c) 2017, Springer International Publishing AG
Analysis of fetal heart rate variability signal to separate distressed iugr fetuses from SGA fetuses
- …