19 research outputs found

    Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    Full text link
    We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM<0.09). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.Comment: 13 Pages, 6 figures. To be published in J. Mag. Mag Mater. proceedings of EMRS200

    Multifractal analysis of the electronic states in the Fibonacci superlattice under weak electric fields

    Full text link
    Influence of the weak electric field on the electronic structure of the Fibonacci superlattice is considered. The electric field produces a nonlinear dynamics of the energy spectrum of the aperiodic superlattice. Mechanism of the nonlinearity is explained in terms of energy levels anticrossings. The multifractal formalism is applied to investigate the effect of weak electric field on the statistical properties of electronic eigenfunctions. It is shown that the applied electric field does not remove the multifractal character of the electronic eigenfunctions, and that the singularity spectrum remains non-parabolic, however with a modified shape. Changes of the distances between energy levels of neighbouring eigenstates lead to the changes of the inverse participation ratio of the corresponding eigenfunctions in the weak electric field. It is demonstrated, that the local minima of the inverse participation ratio in the vicinity of the anticrossings correspond to discontinuity of the first derivative of the difference between marginal values of the singularity strength. Analysis of the generalized dimension as a function of the electric field shows that the electric field correlates spatial fluctuations of the neighbouring electronic eigenfunction amplitudes in the vicinity of anticrossings, and the nonlinear character of the scaling exponent confirms multifractality of the corresponding electronic eigenfunctions.Comment: 10 pages, 9 figure

    Ferroic phase transition sequence in epitaxial BiFeO3 thin films

    No full text
    We report a temperature-dependent high-resolution X-ray diffraction investigation of 200 nm epitaxial BiFeO3 thin films grown on (001) SrTiO3. We were successful in making epitaxial thin films thermally stable, a key requirement for this study. Our results provide evidence that BiFeO3 undergoes three high-temperature transitions: an antiferromagnetic transition at 425°C, a first-order α–β phase transition between 745°C and 780°C and a smoother transition toward the γ-phase at 860°C. Both the α–β and β–γ transitions take place 60°C lower than the bulk values whereas the antiferromagnetic transition occurs 55°C higher. This underscores the part played by strain and also emphasizes that BiFeO3 is not a conventional ferroelectric perovskite. Reciprocal space maps reveal the unusual result that the thin films remain monoclinic on crossing the α–β phase transition. Linear extrapolation of the in-plane lattice parameters to higher temperatures rules out cubic symmetry for the γ-phase

    Anisotropic magnetotransport in high temperature superconductor multilayers

    Get PDF
    Contains fulltext : 112800.pdf (publisher's version ) (Open Access
    corecore