132 research outputs found

    Consequences of intrauterine growth restriction for the kidney

    Get PDF
    Low birth weight due to intrauterine growth restriction is associated with various diseases in adulthood, such as hypertension, cardiovascular disease, insulin resistance and end-stage renal disease. The purpose of this review is to describe the effects of intrauterine growth restriction on the kidney. Nephrogenesis requires a fine balance of many factors that can be disturbed by intrauterine growth restriction, leading to a low nephron endowment. The compensatory hyperfiltration in the remaining nephrons results in glomerular and systemic hypertension. Hyperfiltration is attributed to several factors, including the renin-angiotensin system (RAS), insulin-like growth factor (IGF-I) and nitric oxide. Data from human and animal studies are presented, and suggest a faltering IGF-I and an inhibited RAS in intrauterine growth restriction. Hyperfiltration makes the kidney more vulnerable during additional kidney disease, and is associated with glomerular damage and kidney failure in the long run. Animal studies have provided a possible therapy with blockage of the RAS at an early stage in order to prevent the compensatory glomerular hyperfiltration, but this is far from being applicable to humans. Research is needed to further unravel the effect of intrauterine growth restriction on the kidney

    Pharmacokinetics in children with chronic kidney disease

    Get PDF
    In children, the main causes of chronic kidney disease (CKD) are congenital diseases and glomerular disorders. CKD is associated with multiple physiological changes and may therefore influence various pharmacokinetic (PK) parameters. A wellknown consequence of CKD on pharmacokinetics is a reduction in renal clearance due to a decrease in the glomerular filtration rate. The impact of renal impairment on pharmacokinetics is, however, not limited to a decreased elimination of drugs excreted by the kidney. In fact, renal dysfunction may lead to modifications in absorption, distribution, transport, and metabolism as well. Currently, insufficient evidence is available to guide dosing decisions on many commonly used drugs. Moreover, the impact of maturation on drug disposition and action should be taken into account when selecting and dosing drugs in the pediatric population. Clinicians should take PK changes into consideration when selecting and dosing drugs in pediatric CKD patients in order to avoid toxicity and increase effic

    Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome

    Get PDF
    Nephrotic syndrome is one of the most common glomerular disorders in childhood. Glucocorticoids have been the cornerstone of the treatment of childhood nephrotic syndrome for several decades, as the majority of children achieves complete remission after prednisone or prednisolone treatment. Currently, treatment guidelines for the first manifestation and relapse of nephrotic syndrome are mostly standardized, while large inter-individual variation is present in the clinical course of disease and side effects of glucocorticoid treatment. This review describes the mechanisms of glucocorticoid action and clinical pharmacokinetics and pharmacodynamics of prednisone and prednisolone in nephrotic syndrome patients. However, these mechanisms do not account for the large inter-individual variability in the response to glucocorticoid treatme

    Pharmacology of enalapril in children: a review

    Get PDF
    Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research

    Получение полуизолирующего кремния для высоковольтных приборов

    Get PDF
    Исследовано влияние условий осаждения на структуру и электрофизические свойства пленок поликристаллического кремния, легированного кислородом. Результаты использованы при изготовлении изделий силовой электроники

    A Population Pharmacokinetic Model Does Not Predict the Optimal Starting Dose of Tacrolimus in Pediatric Renal Transplant Recipients in a Prospective Study: Lessons Learned and Model Improvement

    Get PDF
    Background and Objective: Bodyweight-based dosing of tacrolimus is considered standard care. Currently, at first steady state, a third of pediatric kidney transplant recipients has a tacrolimus pre-dose concentration within the target range. We investigated whether adaptation of the starting dose according to a validated dosing algorithm could increase this proportion. Methods: This was a multi-center, single-arm, prospective trial with a planned interim analysis after 16 patients, in which the tacrolimus starting dose was based on bodyweight, cytochrome P450 3A5 genotype, and donor status (living vs. deceased donor). Results: At the interim analysis, 31% of children had a tacrolimus pre-dose concentration within the target range. As the original dosing algorithm was poorly predictive of tacrolimus exposure, the clinical trial was terminated prematurely. Next, the original model was improved by including the data of the children included in this trial, thereby doubling the number of children in the model building cohort. Data were best described with a two-compartment model with inter-individual variability, allometric scaling, and inter-occasion variability on clearance. Cytochrome P450 3A5 genotype, hematocrit, and creatinine influenced the tacrolimus clearance. A new starting dose model was developed in which the cytochrome P450 3A5 genotype was incorporated. Both models were successfully internally and externally validated. Conclusions: The weight-normalized starting dose of tacrolimus should be higher in patients with a lower bodyweight and in those who are cytochrome P450 3A5 expressers

    Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction

    Get PDF
    Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853(∗)]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage

    Influence of Conversion and Anastomotic Leakage on Survival in Rectal Cancer Surgery; Retrospective Cross-sectional Study

    Get PDF

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID
    corecore