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the RAS at an early stage in order to prevent the compensa-
tory glomerular hyperfiltration, but this is far from being ap-
plicable to humans. Research is needed to further unravel 
the effect of intrauterine growth restriction on the kidney. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 In recent years, evidence has mounted on the relation 
between low birth weight (LBW) and diseases in adult-
hood. Since Barker and Osmond  [1]  linked a higher inci-
dence of cardiovascular disease with the fetal environ-
ment, intrauterine growth restriction (IUGR) is used to 
explain the association between LBW and raised blood 
pressure, insulin resistance and non-insulin-dependent 
diabetes mellitus, dyslipidemia and end-stage renal dis-
ease (ESRD)  [2–10] . In this review we discuss the broad 
range of the literature on the effects of IUGR on the kid-
ney. 

 Kidney Development 

 Three different renal organs are formed during fetal 
life, the pronephros, mesonephros and metanephros  [11, 
12] . The first two degrade, but the latter becomes the per-

 Key Words 
 Intrauterine growth restriction  �  Low birth weight  �  
Nephrogenesis  �  Glomerular number  �  Kidney function  �  
Glomerular hyperfiltration  �  Glomerulosclerosis  � 
Renin-angiotensin system  �  Nitric oxide  �  Insulin-like 
growth factor I 

 Abstract 
 Low birth weight due to intrauterine growth restriction is as-
sociated with various diseases in adulthood, such as hyper-
tension, cardiovascular disease, insulin resistance and end-
stage renal disease. The purpose of this review is to describe 
the effects of intrauterine growth restriction on the kidney. 
Nephrogenesis requires a fine balance of many factors that 
can be disturbed by intrauterine growth restriction, leading 
to a low nephron endowment. The compensatory hyperfil-
tration in the remaining nephrons results in glomerular and 
systemic hypertension. Hyperfiltration is attributed to sev-
eral factors, including the renin-angiotensin system (RAS), 
insulin-like growth factor (IGF-I) and nitric oxide. Data from 
human and animal studies are presented, and suggest a fal-
tering IGF-I and an inhibited RAS in intrauterine growth re-
striction. Hyperfiltration makes the kidney more vulnerable 
during additional kidney disease, and is associated with glo-
merular damage and kidney failure in the long run. Animal 
studies have provided a possible therapy with blockage of 
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manent kidney. Through various complex and partly un-
derstood interactions between metanephros and the ure-
teric bud, nephrons start to form from day 30 of gestation 
in humans  [11, 12] . Numerous factors have been identi-
fied as requisites for nephrogenesis, such as the renin-an-
giotensin system (RAS)  [13–19] , various growth factors 
 [20–27] , apoptosis  [25, 28–34] , and an adequate supply of 
nutrients  [17, 35–38] . Around the 36th gestational week 
the formation of nephrons ceases  [39–42] , at which time 
there are around 600,000–800,000 nephrons per kidney 
with a wide interindividual range (250,000–2,000,000) 
 [43–54] . 

 Intrauterine Growth Restriction  

 Renal development is influenced by any insult dis-
turbing the fine balance in the interactions that form the 
kidney. In humans, the most important factors influenc-
ing fetal development are malnutrition (especially in 
poor countries) and uteroplacental insufficiency (prima-
ry cause of IUGR in western countries)  [55, 56] . Another 
hypothesis that explains the LBW and diseases in later 
life is based on excessive exposure to glucocorticoids in 
the fetus due to inhibition of the placental enzyme 11 � -
hydroxysteroid dehydrogenase  [57] . This enzyme con-
verts active steroids into inactive metabolites, thereby 
protecting the fetus from overexposure of endogenous 
steroids. If the 11 � -hydroxysteroid dehydrogenase is in-
hibited or if the fetus is exposed to exogenous steroids, 
fetal growth is inhibited  [57] . 

 The resulting IUGR leads to a lower number of neph-
rons  [58–61] . An inverted relationship has been shown 
between birth weight and nephron number, even in indi-
viduals with an appropriate birth weight for gestational 
age  [53, 61–63] . Irrespective of birth size, premature birth 
can also disturb nephrogenesis and lead to a nephron def-
icit  [64, 65] . Kidney dimensions on ultrasound have been 
shown to be a marker for the number of nephrons in pri-
mates  [66] , and are reduced in late gestation  [67–72] , in 
the first year of life  [73–75] , and in childhood  [75, 76]  af-
ter IUGR. Kidney weight is also reduced in childhood 
 [77] . 

 The low nephron endowment will lead to a compensa-
tion in the residual nephrons  [78] , resulting in hypertro-
phy and hyperfiltration  [79] . However, this adaptation 
may have adverse effects in the long run according to the 
hyperfiltration theory  [79–83] : by reabsorbing more so-
dium and raising glomerular pressure, systemic blood 
pressure rises and albuminuria may develop. This results 

in sclerosis of glomeruli, culminating in a vicious circle 
which may continue to ESRD  [80, 83–86] . The prevalence 
of ESRD indeed is higher in populations with increased 
rates of LBW  [87–90] . The nephron number is inversely 
related to glomerular volume  [63] , and glomerular en-
largement is found in these ethnic groups with a high in-
cidence of hypertension and progressive renal disease  [91, 
92] , both associated with IUGR  [5, 6] . Hayman et al.  [93] 
 described in 1939 an association between nephron num-
ber and hypertension. An autopsy study in humans from 
Keller et al.  [94]  confirms the link between hypertension 
and fewer, but larger glomeruli, providing evidence for a 
low number of glomeruli as an explanation for primary 
hypertension. 

 A study in rats, using prenatal dexamethasone, shows 
that there is only a reduction in nephrons when admin-
istered on days 15–16 and 17–18 which coincides with an 
increase in blood pressure  [95] , again linking the neph-
ron number with hypertension. After maternal protein 
restriction in the rat, a direct association between blood 
pressure and glomerular number has also been estab-
lished  [96] . 

 Another renal mechanism that can explain the asso-
ciation between IUGR and hypertension is based on an 
increased tubular sodium reabsorption. Manning et al.  
[97]  have shown upregulation at both the mRNA and 
protein level of two critical renal sodium transporters, i.e. 
bumetadine-sensitive Na-K-2Cl cotransporter (BSC1) 
and thiazide-sensitive Na-Cl cotransporter (TSC). 

 Animal Models 

 In order to study the effects of IUGR on the kidney, 
various animal models have been used. Some studies 
utilize naturally occurring IUGR animals  [98–104] . 
Methods to induce fetal growth restriction are based on 
maternal deprivation of nutrients (total intake  [105–118]  
or a component like protein  [34, 119–143] , vitamin A 
 [144] , sodium  [145, 146]  or iron  [147, 148] ), placental 
embolization  [149, 150] , surgical reduction of placental 
blood flow  [104, 123, 151–163] , or the use of steroids  [95, 
164–172] .  Tables 1–3  provide an overview of the effects 
of nongenetic IUGR on kidney morphology and func-
tion in various animal studies. The results of these ani-
mal models of IUGR show that marked structural and 
functional alterations take place in the kidney. The most 
important systems that are associated with the low glo-
merular number will be discussed below, and are de-
picted in  figure 1 . 
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  Table 1.  Effect of IUGR on renal macroscopic morphology 

Animal IUGR method References

Kidney weight

Increased None

Unaltered Monkey Maternal steroids 164
Sheep Naturally occurring 98

Maternal steroids 166, 169, 172
Rat Naturally occurring 101, 103, 104

Uterine artery ligation 104, 152, 158–160
Maternal steroids 165, 171
Maternal food restriction 105, 115
Maternal protein restriction 121, 127, 133, 134, 136, 137, 139, 143
Maternal iron restriction 148

Decreased Pig Naturally occurring 99, 102, 219
Sheep Placental embolization 149, 150

Caruncle removal 154
Maternal steroids 169

Rabbit Maternal food restriction 116
Uterine artery ligation 153

Guinea pig Uterine artery ligation 151, 163
Maternal food restriction 113

Rat Maternal steroids 168
Maternal food restriction 106, 107, 110–112, 117
Maternal protein restriction 125, 135, 141
Maternal sodium restriction 145
Maternal vitamin A restriction 144

Relative kidney weight

Increased Rat Maternal steroids 171
Maternal protein restriction 132
Maternal iron restriction 147, 148

Unaltered Pig Naturally occurring 219
Sheep Placental embolization 149, 150

Caruncle removal 154
Maternal steroids 166, 169, 170

Guinea pig Uterine artery ligation 151, 157, 163
Maternal food restriction 113

Rat Naturally occurring 101, 103, 104
Uterine artery ligation 104
Maternal steroids 168
Maternal food restriction 108, 109, 111, 117, 118
Maternal protein restriction 121, 127, 129, 133, 134, 136-138, 141
Maternal sodium restriction 145

Decreased Rat Maternal food restriction 106, 110, 112, 115
Maternal protein restriction 126, 128, 174
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  Table 2.  Effect of IUGR on renal microscopic morphology 

Animal IUGR method References

Nephron number

Increased None

Unaltered Sheep Placental embolization 150
Rat Naturally occurring 101

Maternal sodium restriction 145

Decreased Pig Naturally occurring 102
Sheep Naturally occurring 98

Maternal steroids 172
Maternal food restriction 116

Rabbit Uterine artery ligation 153
Guinea pig Uterine artery ligation 157
Rat Naturally occurring 104

Uterine artery ligation 104, 123, 155
Maternal steroids 95, 165, 167, 168
Maternal food restriction 106, 112, 118
Maternal protein restriction 34, 120, 123, 128, 130, 131,

133–136, 139–143
Maternal iron restriction 148
Maternal vitamin A restriction 144

Glomerular size

Increased Rat Naturally occurring 104
Uterine artery ligation 104
Maternal food restriction 106, 112, 114
Maternal protein restriction 134

Unaltered Sheep Placental embolization 150
Rat Maternal protein restriction 135, 136, 141

Maternal sodium restriction 145
Maternal iron restriction 148

Decreased None

Sclerosis

Increased Rat Maternal steroids 167
Maternal food restriction 109, 114

Unaltered Rat Naturally occurring 103, 104
Uterine artery ligation 104, 162
Maternal steroids 95, 171
Maternal protein restriction 134

Decreased None

Apoptosis

Increased Rat Uterine artery ligation 155
Maternal protein restriction 34, 133

Unaltered None

Decreased None

  
  



 Schreuder   /Delemarre-van de Waal   /
van Wijk    
  

 Kidney Blood Press Res 2006;29:108–125 112

 Renin-Angiotensin System 

 The RAS plays an important role in the regulation of 
capillary resistance and composition and volume of the 
extracellular fluid, especially the distribution of sodium 
 [13] . These factors are closely interrelated with systemic 
blood pressure and with renal hemodynamics. A normal 
functioning RAS is also necessary for normal nephrogen-
esis  [13–19] . An inhibition of the RAS in utero can there-
fore play a role in the etiology of a low nephron number 
after IUGR. In fact, a low plasma renin activity (PRA) 
 [133, 173]  and reduced levels of renal renin protein and 
mRNA  [134]  have been described in newborn IUGR rats, 
even though the results are nonequivocal  [174] . However, 

abnormal maturation of the RAS in the human fetal kid-
ney has been described after IUGR  [175] , and the RAS 
does not seem to be inhibited by IUGR, but rather in-
creased: PRA is raised in cord blood of LBW babies, both 
in utero  [176, 177]  and at birth  [69, 178] . This may be a 
compensatory mechanism for a faltering nephrogenesis 
due to a deficiency of another growth factor. Other ani-
mal models show changes in the RAS that are more in line 
with the results in humans. In fetal sheep, gene expres-
sion of the RAS is upregulated after maternal steroid 
treatment  [166]  leading to a fetal expression that resem-
bles the normal neonatal phase suggesting a premature 
maturation of the fetal kidney. However, removal of en-
dometrial caruncles, leading to fetal hypoxia and IUGR, 

Animal IUGR method References

GFR

Increased Rat Uterine artery ligation 159, 162

Unaltered Rat Naturally occurring 103
Uterine artery ligation 156
Maternal steroids 95, 168, 171, 172
Maternal protein restriction 128, 129, 134, 139

Decreased Pig Naturally occurring 99, 100, 102
Rat Maternal food restriction 109, 111, 112, 114

Maternal protein restriction 119, 141

Urinary albumin excretion

Increased Rat Naturally occurring 103, 104
Uterine artery ligation 104, 159
Maternal steroids 165
Maternal food restriction 109, 112, 114
Maternal protein restriction 129

Unaltered Rat Naturally occurring 101
Uterine artery ligation 162
Maternal steroids 171
Maternal food restriction 111
Maternal protein restriction 135

Decreased None

Na excretion

Increased None

Unaltered Pig Naturally occurring 99, 100
Rat Uterine artery ligation 156

Maternal steroids 168
Maternal food restriction 106, 109, 114

Decreased Rat Maternal food restriction 111
Maternal sodium restriction 145, 146

  
  

  Table 3.  Effect of IUGR on renal function 
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was associated with similar plasma renin concentrations, 
but reduced levels of renin and angiotensinogen mRNA 
 [154] , and treatment with cortisol reduces renin mRNA 
expression  [179] . Fetal treatment with dexamethasone in 
sheep increases pulmonary angiotensin-converting en-
zyme (ACE) concentration but not renal ACE  [180] . These 
results indicate activation of the fetal RAS in IUGR and 
suggest that responsiveness of the fetoplacental vascula-
ture to the peptide is not diminished as would be expect-
ed from the elevated plasma angiotensin II (ANG II) lev-
els  [178] . Fetal RAS is related to the production and re-
sponse to prostaglandins, which has been found to be 
increased in fetal sheep during IUGR  [181] . 

 Genetic or pharmacological alterations in the RAS are 
also known to alter kidney development. When ACE in-
hibitors are used during pregnancy, especially during the 
second and third trimester, they have been shown to be 
fetotoxic, resulting in fetal hypotension, renal tubular 
dysplasia and anuria-oligohydramnion  [182, 183] . These 
effects of ACE inhibition in the developing kidney are 
due to a reduction in the renal expression of critical 
growth factors  [184] , possibly mediated by angiotensin II 
receptor type 1 (AT1)  [185] . 

 Nephrogenesis in the rat ends around the 8th postna-
tal day  [12, 27, 186–191] . Treatment of neonatal rats (i.e. 
during active nephrogenesis) with an AT1 antagonist 
 [192–194]  or an ACE inhibitor  [192, 195, 196]  leads to a 

decreased nephron number and an altered renal water 
handling, suggesting an important role for ANG II in 
nephrogenesis. However, not all studies show similar ef-
fects. Using proper stereological techniques, McCaus-
land et al.  [16]  described no difference in glomerular 
number, size and morphology when neonatal rats were 
treated with ACE inhibitors or AT1 antagonists, even 
though gross vascular and tubular damage was evident. 

 After nephrogenesis, the RAS is likely to be upregu-
lated after IUGR, thereby causing hyperfiltration and hy-
pertension. At a higher age, control rats show an age-de-
pendent decline in PRA whereas IUGR rats develop hy-
perreninemia  [173] . After maternal food restriction, 
4-month-old rats show increased ANG II and plasma al-
dosterone levels  [118] . 

 At the age of 19 years, PRA was not related to birth 
weight z-score in humans  [197] . When hypertension has 
developed, PRA and ANG II levels are found to be the 
same in rats after prenatal protein restriction  [124, 134] , 
but a greater and prolonged response to ANG II has been 
shown  [140]  as well as an enhanced expression of AT1 
receptor, indicating a faltering downregulation  [198] . 
Nine-month-old sheep born after maternal food restric-
tion show similar AT1 and AT2 receptor expression, but 
an increase in renal cortex ACE expression  [116] . ACE 
activity in humans shows no correlation with birth weight 
at birth and 1 month of age, but there is a negative cor-

  Fig. 1.  Potential mechanisms leading to 
low glomerular number and subsequent 
hypertension. 
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relation at the age of 3 months  [199] . In rats, plasma  [124]  
and pulmonary ACE activity is raised  [118, 122] , but renal 
ACE activity is unaltered  [118, 129] . In 3-month-old pigs, 
renal and pulmonary ACE concentration is reduced with 
no difference in plasma ACE concentration  [200] . The 
higher ACE activity is likely to contribute to the hyper-
tension that is linked to IUGR. Control of the glomerular 
hypertension with ACE inhibitors has been shown to be 
effective in preventing glomerular damage and hyperten-
sion: this has been described after IUGR  [127, 201] , surgi-
cal renal mass reduction  [202]  and in hypertensive rat 
strains  [203–207] . However, human studies are lacking, 
which makes it preliminary to suggest such a treatment 
in men. 

 Even though studies show conflicting results, most 
papers suggest that growth failure induces suppression of 
the fetal RAS, which could be a causal pathway to explain 
the reduced nephron number. However, in later life the 
RAS is activated inappropriately, which may contribute 
to hypertension. Another possible causeway can be the 
renal sympathetic nerve activity, which has been shown 
to be increased after induced uteroplacental insufficiency 
in the rat  [160] . This can lead to a reset hyperfiltration, 
after which RAS is normalized or even reduced while the 
hyperfiltration and hypertension persist. 

 Insulin-Like Growth Factor I  

 In rodent kidney development, insulin-like growth 
factor I (IGF-I) plays an important role in metanephric 
morphogenesis  [208, 209] : blocking IGF-I expression 
with antibodies  [210]  or the IGF-I receptor with antisense 
oligonucleotides  [211]  leads to an impaired development. 
Reduced amounts of circulating IGF lead to a nephron 
deficit  [212]  and early glomerulosclerosis  [213] , whereas 
treating IGF-deficient mice with IGF-I increases the 
number of glomeruli  [209] . 

 Variations in the IGF-I gene are associated with LBW 
in some populations  [214]  but not in all  [215] , and IGF-I 
levels are known to be reduced in cord blood from IUGR 
fetuses  [216–218] , newborn runt pigs  [219]  and fetal IUGR 
rats  [220] . 

 In kidney development, there is an interaction be-
tween the RAS and IGF-I. ACE inhibition in neonatal rats 
leads to an increased renal expression of IGFBP-1  [221] , 
thereby inhibiting IGF-I action. By adding IGF-I to the 
ACE inhibition, the animals show normalized renal func-
tion and histology  [23] . After long-term IGF-I infusion in 
fetal sheep, the RAS is intensely activated and kidney 

mass has increased  [222] . IGF-I may therefore be a pos-
sible link in the association between IUGR and renal de-
velopmental problems. 

 Nitric Oxide  

 An important system for the kidney also involves the 
endothelial function of arteries and the nitric oxide (NO) 
system. In utero, NO production is upregulated to main-
tain a low resistance in the fetoplacental circulation  [223] . 
IUGR newborns exhibit a higher endogenous NO pro-
duction in the first 48 h of life  [224] . 

 IUGR rats showed a higher NO excretion at the age of 
4 weeks, but a similar excretion at the age of 8 weeks  [225] . 
In adult IUGR rats, endothelial dysfunction in associa-
tion with a decrease in activity and expression of endo-
thelial NO synthase was described  [226, 227] . Others 
have shown a diminished NO-dependent vasorelaxation 
 [111, 138, 228–231] . Deficiency of NO, induced by exog-
enous inhibition of NO generation by arginine analogues 
leads to hypertension  [232–234] , and increased levels of 
PRA  [234, 235] , suggesting a role of RAS activation 
through endogenous NO inhibition after IUGR. 

 Uric Acid 

 The role of uric acid, which decreases the production 
of NO and produces endothelial dysfunction  [236] , is 
subject of renewed interest  [237] . An inverted relation-
ship between birth weight and serum uric acid has been 
shown  [238] . Several reports associate a higher serum 
uric acid level with increased blood pressure  [239, 240] , 
cardiovascular events  [241, 242]  and progression of renal 
disease  [243] . A recent report shows that uric acid leads 
to glomerular hypertension by inducing arteriolopathy of 
preglomerular vessels  [244] . The serum uric acid level is 
influenced by renal tubular function, since the uric acid 
reabsorption is linked to proximal sodium reabsorption. 
Since IUGR leads to an increased tubular sodium reab-
sorption  [97] , uric acid may possibly be a causative agent 
linking IUGR and adult diseases. 

 Apoptosis 

 Nephrogenesis is a process that requires structural 
formation and reformation, in which apoptosis plays an 
important role  [25, 28–34] . As IUGR influences the for-



 Renal Consequences of IUGR  Kidney Blood Press Res 2006;29:108–125 115

mation of nephrons, it has been suggested that apoptosis 
clears more progenitor cells during development. In fact, 
apoptosis is found to be altered by IUGR: rats exhibit an 
increased renal apoptosis as shown by TUNEL assay  [34, 
133, 155] . Juvenile IUGR rats show an increased caspase-
3 activity, which is necessary for DNA fragmentation that 
characterizes apoptosis  [155] . Levels of Bcl-2 (an anti-
apoptosis protein) mRNA are reduced, while levels of an 
apoptosis-related protein (Bax) are increased  [155] . This 
is related to an altered p53 gene expression, which is a 
known regulator of apoptosis-related proteins  [155] . Lat-
er in life, no effect of IUGR was described: in kidneys 
from 9-month-old sheep, similar levels of apoptosis and 
caspase-3 activity were found after maternal food restric-
tion  [116] . 

 Short-Term Consequences 

 In utero, the developing kidney is already functionally 
affected by growth restriction: fetal urine production, 
measured by ultrasound, and glomerular filtration rate 
(GFR) are decreased  [68, 245] . 

 Directly postnatal, LBW infants show a higher frac-
tional sodium excretion and decreased glomerular filtra-
tion  [246, 247] . We have shown that in 1-day-old neo-
nates, the birth weight z-score is associated with the 
clearance of amikacin, which is a marker for GFR 
[Schreuder et al., unpubl. data]. Clearance of vancomycin 
is also lower in LBW neonates  [248] . Renal artery blood 
flow has been shown to be lower in LBW infants  [249] . A 
recent study in extremely LBW infants, born both prema-
ture with normal birth weight as well as premature with 
IUGR, demonstrated that GFR and tubular functions are 
impaired at the age of 6–12 years when compared with 
term controls  [250] . No difference between the groups 
born with low versus appropriate birth weight for gesta-
tional age was noted. The authors conclude that being 
born prematurely will impair nephrogenesis, with no ad-
ditional unfavorable effect of the IUGR  [250] . Prematu-
rity has been identified before as a risk factor, and results 
in a lower glomerular number  [64] , a high percentage of 
renal failure in the neonatal period, and an increased risk 
of renal insufficiency later in life  [251] . A recent study in 
preterm children showed a negative association between 
GFR and birth weight and between albumin-creatinine 
ratio and birth weight at the age of 19 years  [252] . In con-
trast, other studies in adolescents described no influence 
of birth weight on GFR and proteinuria  [253, 254] . 

 ‘First Hit-Second Hit’ Hypothesis 

 According to the ‘first hit-second hit’ hypothesis  [130] , 
the low nephron number influences the presentation and 
course of accompanying renal disease, thus altering the 
prognosis. This was first described by Duncan et al.  [255]  
in patients with idiopathic membranous nephropathy, 
who showed a correlation between birth weight and 
slopes of reciprocal creatinine regression lines. In chil-
dren with IgA nephropathy, LBW is associated with a 
higher incidence of arterial hypertension, and a higher 
percentage of sclerotic glomeruli in renal biopsy  [256] . 
Minimal change nephrotic syndrome in children with 
IUGR has an unfavorable course, leading to more relaps-
es, a higher incidence of steroid dependency and more 
need for cytotoxic agents and cyclosporine  [257–259] . As-
sociations between birth weight and diabetic nephropa-
thy  [260–262]  or renal damage due to urinary tract infec-
tion  [263]  have been reported, but are not undisputed 
 [264–266] . However, a study in rats after prenatal gluco-
corticoids shows an increased susceptibility to cell death 
in renal cells  [267] , which may be the pathway to explain 
the difference in renal damage after urinary tract infec-
tion. 

 IUGR influences renal function in infancy and child-
hood, but also aggravates additional renal diseases, pos-
sibly as a result of the nephron endowment and subse-
quent hyperfiltration. 

 Long-Term Consequences 

 The lower number of nephrons is affected in the long 
run by both hypertrophy and hyperfiltration, leading to 
glomerular damage and hypertension. 

 Studying a group of LBW women aged 23–26 years, 
Kistner et al.  [254]  describe no significant difference in 
proteinuria or mean GFR, even though there are more 
individuals with an impaired GFR in this group. This is 
in line with the results of Yudkin et al.  [268]  who report-
ed no association between albuminuria in adulthood 
(range 47–75 years of age) and any measure of size at 
birth, even though there is a higher incidence of micro-
albuminuria in the group with the thinnest individuals 
at birth. An increase in albuminuria has also been de-
scribed in adults after prenatal exposure to the Dutch 
famine in mid gestation  [269] . In a recent study in 19-
year-old subjects born very preterm, Keijzer-Veen et al. 
 [252]  describe an increase in microalbuminuria and se-
rum creatinine, and a lower GFR after IUGR. 
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 In a group of adult Aborigines, an inverse relationship 
between birth weight and albumin/creatinine ratio is 
found  [87, 270] . At higher ages, data supports the asso-
ciation between LBW and increased susceptibility to ear-
ly-onset ESRD  [87–90] . 

 Part of the compensation for the nephron endowment 
consists of glomerular hypertrophy. An increase in the 
size of glomeruli is also seen in an early phase of kidney 
damage  [91, 92] , and glomerular enlargement in donor 
kidneys is a risk factor for late allograft dysfunction  [271, 
272] . A combination of a higher incidence of glomerular 
enlargement and diabetic nephropathy and glomerulo-
sclerosis has been shown in various indigenous popula-
tions, like Pima Indians  [273, 274]  and Australian Ab-
origines  [76, 275, 276] . In a large Aboriginal population a 
decrease in birth weight correlates with an increase in 
albuminuria from childhood and overt albuminuria by 
early adult life  [277] . Larger kidneys also seem to be a 
marker for subsequent nephropathy in patients with dia-
betes mellitus  [278] . 

 Renal cell cancer is associated with hypertension and 
diabetes mellitus that are both long-term consequences 
of LBW  [279, 280] . In one study though, an association 
between birth weight and renal cell cancer has been found 
only in men with a birth weight of over 3,500 g: LBW did 
not show a clear association  [281] . 

 In conclusion, IUGR leads to fewer and larger glom-
eruli, which is associated with proteinuria and hyperten-
sion in the long run. 

 Renal Mass Reduction in Men 

 A comparison is made with situations where the neph-
ron number is reduced by other causes, e.g. nephrectomy 
due to nonrenal disease or for donor purposes. However, 
these results have to be interpreted with caution since the 
reduction in kidney mass may not have taken place dur-
ing development but in adulthood. There is a known dif-
ference in compensation after renal ablation depending 
on sex  [282–285]  and age: compensation is more pro-
nounced when renal reduction is performed before com-
pletion of nephrogenesis and development  [188, 286–
294] . This means that the maladaptive resetting that can 
be seen after IUGR is different from the changes seen 
when nephrectomy is performed in adults  [295] . 

 After nephrectomy in childhood the remaining kid-
ney enlarges and GFR rises to around 75% of normal val-
ues for 2 kidneys  [287, 296–299] . Renal reserve capacity 
decreases during the years after nephrectomy  [300] . In 

the long run, this adaptation is lost, leading to a decrease 
in GFR, augmented albuminuria and more glomerulo-
sclerosis in most  [299, 301–303]  but not all reports  [297, 
298] . Even after uninephrectomy in adults, when GFR 
rises to 60–70% of normal values for 2 kidneys  [304, 305] , 
hypertension and proteinuria are described  [306–317]  al-
though most studies report no or small risks for hyper-
tension and renal damage or failure  [292, 318–325] . 

 Renal agenesis may be a more reliable comparison in 
terms of the timing of renal mass reduction. It leads to 
compensatory renal growth  [296, 326]  and an increased 
risk of hypertension and kidney failure in adulthood with 
low GFR, elevated urinary protein excretion and scleros-
ing glomerular lesions  [301, 310, 314, 327–332] , even 
though not all studies show this  [322] . In a cohort of 66 
patients with congenital solitary kidneys, we have shown 
that 50% of these children are hypertensive, using anti-
hypertensive drugs, or have microalbuminuria at a mean 
age of 9 years [Schreuder et al., unpubl. data]. These data 
warrant regular checkups of patients with congenital re-
nal mass reduction or nephrectomy in childhood. 

 Experimental Renal Mass Reduction 

 Several animal models are used to study the effect of a 
nephron endowment on long-term kidney function. Var-
ious rat strains show a lower number of nephrons, like the 
MWF  [333] , spontaneous hypertensive  [334] , Milan hy-
pertensive  [335]  and Prague hypertensive rat  [336, 337] . 
When compared with their respective controls, this re-
sults in hyperfiltration, glomerular capillary hyperten-
sion, progressive proteinuria and accelerated glomerular 
sclerosis  [81, 338] . When a kidney from a hypertensive rat 
strain is transplanted into a normotensive rat, hyperten-
sion develops and vice versa  [339–350] , which leads to the 
conclusion that blood pressure travels with the kidney 
 [351, 352] . However, a recent study showed a lower blood 
pressure but the same number of glomeruli in the F2 pop-
ulation after crossbreeding a hypertensive with a normo-
tensive rat strain, leading to the conclusion that there is 
no direct relationship between the nephron number and 
blood pressure  [353] . 

 To induce a low glomerular number, several genetic 
models are available as well. In mice, a reduced number 
of glomeruli can be induced by the knockout of one allele 
for an essential factor for kidney development, i.e. glial 
cell line-derived neurotrophic factor (GDNF)  [354, 355] , 
by overexpression of insulin growth factor binding pro-
tein (IGFBP)  [212] , or by a specific mutation  [356] . 
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 Another approach uses a surgical reduction of the 
nephron number in the fetal or neonatal developmental 
stage in order to mimic the effect of IUGR on the kidney. 
In sheep, fetal uninephrectomy leads to diminished renal 
function later in life  [357, 358] . Neonatal uninephrecto-
my in rats leads to larger glomeruli, hyperfiltration, aug-
mented proteinuria and (salt-sensitive) hypertension 
 [295, 359, 360] . 

 Concluding Remarks 

 Nephrogenesis is a complex process that requires a fine 
balance of many factors. IUGR leads to LBW, but can also 
disturb this balance leading to a low nephron endowment. 

Activation of the RAS, inhibition of NO and IGF-I, raised 
tubular sodium reabsorption and increased serum uric 
acid levels are mechanisms that are associated with IUGR 
and a low glomerular number and may explain the long-
term consequences on blood pressure and renal function. 
The compensatory glomerular hyperfiltration may aggra-
vate kidney diseases and is likely to result in systemic hy-
pertension and renal damage and failure. Further study is 
required to unravel the mechanisms that result in IUGR 
and the pathways that explain the association between 
IUGR and adult diseases. This should eventually lead to 
interventions to optimize fetal growth, and to prevent 
adult diseases when IUGR is present. Until then, IUGR and 
renal mass reduction in childhood are important factors 
that researchers and clinicians need to acknowledge. 
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