13 research outputs found

    Maternal occupation during pregnancy, birth weight, and length of gestation: Combined analysis of 13 European birth cohorts

    Get PDF
    Objectives We assessed whether maternal employment during pregnancy – overall and in selected occupational sectors – is associated with birth weight, small for gestational age (SGA), term low birth weight (LBW), length of gestation, and preterm delivery in a population-based birth cohort design. Methods We used data from >200 000 mother-child pairs enrolled in 13 European birth cohorts and compared employed versus non-employed women. Among employees, we defined groups of occupations representing the main sectors of employment for women where potential reproductive hazards are considered to be present. The comparison group comprised all other employed women not included in the occupational sector being assessed. We performed meta-analyses of cohort-specific estimates and explored heterogeneity. Results Employees had a lower risk of preterm delivery than non-employees [adjusted odds ratio (ORadj) 0.86, 95% confidence interval (95% CI) 0.81–0.91]. Working in most of the occupational sectors studied was not associated with adverse birth outcomes. Being employed as a nurse was associated with lower risk SGA infants (ORadj 0.91, 95% CI 0.84–0.99) whereas food industry workers had an increased risk of preterm delivery (ORadj 1.50, 95% CI 1.12–2.02). There was little evidence for heterogeneity between cohorts. Conclusions This study suggests that, overall, employment during pregnancy is associated with a reduction in the risk of preterm birth and that work in certain occupations may affect pregnancy outcomes. This exploratory study provides an important platform on which to base further prospective studies focused on the potential consequences of maternal occupational exposures during pregnancy on child development

    Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 Mw6.6 Bodrum-Kos earthquake, eastern Aegean Sea

    No full text
    The interpretation of new multichannel seismic profiles and previously published high-resolution swath and seismic reflection data from the Gökova Gulf and southeast of Kos Island in the eastern Aegean Sea revealed new morphotectonic features related to the July 20, 2017 Mw6.6 Bodrum-Kos earthquake offshore between Kos Island and the Bodrum Peninsula. The seafloor morphology in the northern part of the gulf is characterized by south-dipping E–W-oriented listric normal faults. These faults bend to a ENE–WSW direction towards Kos Island, and then extend parallel to the southern coastline. A left-lateral SW–NE strike-slip fault zone is mapped with segments crossing the Gökova Gulf from its northern part to south of Kos Island. This fault zone intersects and displaces the deep basins in the gulf. The basins are thus interpreted as the youngest deformed features in the study area. The strike-slip faults also produce E–W-oriented ridges between the basin segments, and the ridge-related vertical faults are interpreted as reverse faults. This offshore study reveals that the normal and strike-slip faults are well correlated with the focal mechanism solutions of the recent earthquake and general seismicity of the Gökova Gulf. Although the complex morphotectonic features could suggest that the area is under a transtensional regime, kinematic elements normally associated with a transtensional system are missing. At present, the Gökova Gulf is experiencing strike-slip motion with dominant extensional deformation, rather than transtensional deformation. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature

    Thermal State and concentration of gas hydrate and free gas of Coyhaique, Chilean Margin

    No full text
    In the last decades gas hydrate occurrence along the Chilean continental margin has been well documented. In order to better define the seismic character of the hydrate-bearing sediments, we per-formed a detailed velocity analysis by using the pre-stack depth migration on part of multichannel reflection seismic line RC2901-734 located offshore Coyhaique. The velocity model shows a hydrate bearing layer above the BSR, with high velocity (1700e2200 ms#1) and maximumthickness of 250 mand a free gas bearing layer below the BSR, characterized by low velocity (1250e1400 ms#1). A weak reflector at about 70 m below the BSR marks the base of the second layer. By knowing the BSR depth, the seafloor depth, and the sea bottom temperature, the geothermal gradient was estimated. The resulting gradient varies from 35 to 95 !C km#1, with highest values at the structural high, and the lowest values located in the accretionary prism and in the fore arc basin. In order to quantify the amount of gas phase, the velocity model was converted into a gas-phase concentration model by using a theoretical approach. The results indicate that highest concentrations of gas hydrates, up to 23% of the total volume, are located in the fore-arc basin, and that highest concentration of free gas, up to 3% of the total volume, are located at the structural high, which may be considered as a natural trap for migrating fluids. Average concentrations are equal to 12% and 1% of total volume for gas hydrate and free gas, respectively
    corecore