1,273 research outputs found

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    Gauge fields, ripples and wrinkles in graphene layers

    Full text link
    We analyze elastic deformations of graphene sheets which lead to effective gauge fields acting on the charge carriers. Corrugations in the substrate induce stresses, which, in turn, can give rise to mechanical instabilities and the formation of wrinkles. Similar effects may take place in suspended graphene samples under tension.Comment: contribution to the special issue of Solid State Communications on graphen

    Sorption direct air capture with CO2 utilization

    Get PDF
    Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as “synthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures

    Hodge Theory on Metric Spaces

    Get PDF
    Hodge theory is a beautiful synthesis of geometry, topology, and analysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version, to appear in Foundations of Computational Mathematics. Minor changes and addition

    Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses

    Get PDF
    Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision data is compared to variational calculations with the nucleon-nucleon potential alone and also to calculations including a three-nucleon (3N) potential. Agreement with cross-section and tensor analyzing power data is excellent when a 3N potential is used. However, a comparison between the vector analyzing powers reveals differences of approximately 40% in the maxima of the angular distributions which is larger than reported at higher energies for both p-d and n-d scattering. Single-energy phase-shift analyses were performed on this data set and a similar data set at E_c.m.=431.3 keV. The role of the different phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure

    Electron Rearrangement Dynamics in Dissociating I 2 n Molecules Accessed by Extreme Ultraviolet Pump Probe Experiments

    Get PDF
    The charge rearrangement in dissociating In 2 molecules is measured as a function of the internuclear distance R using extreme ultraviolet pulses delivered by the free electron laser in Hamburg. Within an extreme ultraviolet pump probe scheme, the first pulse initiates dissociation by multiply ionizing I2, and the delayed probe pulse further ionizes one of the two fragments at a given time, thus triggering charge rearrangement at a well defined R. The electron transfer between the fragments is monitored by analyzing the delay dependent ion kinetic energies and charge states. The experimental results are in very good agreement with predictions of the classical over the barrier model demonstrating its validity in a thus far unexplored quasimolecular regime relevant for free electron laser, plasma, and chemistry application

    ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy. Gene expression datasets, co-culture experiments, xenografts, and patient samples were analyzed. Serum samples were measured from a cohort of 58 resected patients, and 87 metastatic or locally advanced PDAC patients. Baseline and follow-up levels were assessed in 372 additional metastatic PDAC patients who received nab-paclitaxel with gemcitabine (n = 184) or gemcitabine monotherapy (n = 188) in the phase III MPACT trial. Increased levels of ADAM12 were found in PDAC patients compared to healthy controls (p < 0.0001, n = 157 and n = 38). High levels of ADAM12 significantly associated with poor outcome in resected PDAC (HR 2.07, p = 0.04). In the MPACT trial survival was significantly longer for patients who received nab-paclitaxel and had undetectable ADAM12 levels before treatment (OS 12.3 m vs 7.9 m p = 0.0046). Consistently undetectable or decreased ADAM12 levels during treatment significantly associated with longer survival as well (OS 14.4 m and 11.2 m, respectively vs 8.3, p = 0.0054). We conclude that ADAM12 is a blood-borne proxy for stromal activation, the levels of which have prognostic significance and correlate with treatment benefit

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section
    corecore