10 research outputs found
Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population
Background: Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells
involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the
production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and
regulation of autoreactive CD8+ T cells in Multiple Sclerosis.
Methodology/Principal Findings: Immunoproteasomes and PA28-ab regulator are present in MS affected brain area and
accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons,
endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262
Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2
codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele
produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111\u2013119.
Conclusion/Significance: The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLAA*
02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific
MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of
immunoproteasome in the MS pathogenesis
Quantitative PCR to estimate copepod specific feeding during a mesocosm study
International Symposium Aquatic Mesocosm Research: Recent achievements and future directions in Aquatic Mesocosm Research, 16-19 October 2012, Heraklion, Crete, GreecePeer Reviewe