599 research outputs found

    On the Evolution Equation for Magnetic Geodesics

    Full text link
    In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesics.Comment: In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesic

    The Role of Surface Entropy in Statistical Emission of Massive Fragments from Equilibrated Nuclear Systems

    Full text link
    Statistical fragment emission from excited nuclear systems is studied within the framework of a schematic Fermi-gas model combined with Weisskopf's detailed balance approach. The formalism considers thermal expansion of finite nuclear systems and pays special attention to the role of the diffuse surface region in the decay of hot equilibrated systems. It is found that with increasing excitation energy, effects of surface entropy lead to a systematic and significant reduction of effective emission barriers for fragments and, eventually, to the vanishing of these barriers. The formalism provides a natural explanation for the occurrence of negative nuclear heat capacities reported in the literature. It also accounts for the observed linearity of pseudo-Arrhenius plots of the logarithm of the fragment emission probability {\it versus} the inverse square-root of the excitation energy, but does not predict true Arrhenius behavior of these emission probabilities

    Polar Perturbations of Self-gravitating Supermassive Global Monopoles

    Full text link
    Spontaneous global symmetry breaking of O(3) scalar field gives rise to point-like topological defects, global monopoles. By taking into account self-gravity,the qualitative feature of the global monopole solutions depends on the vacuum expectation value v of the scalar field. When v < sqrt{1 / 8 pi}, there are global monopole solutions which have a deficit solid angle defined at infinity. When sqrt{1 / 8 pi} <= v < sqrt{3 / 8 pi}, there are global monopole solutions with the cosmological horizon, which we call the supermassive global monopole. When v >= sqrt{3 / 8 pi}, there is no nontrivial solution. It was shown that all of these solutions are stable against the spherical perturbations. In addition to the global monopole solutions, the de Sitter solutions exist for any value of v. They are stable against the spherical perturbations when v sqrt{3 / 8 pi}. We study polar perturbations of these solutions and find that all self-gravitating global monopoles are stable even against polar perturbations, independently of the existence of the cosmological horizon, while the de Sitter solutions are always unstable.Comment: 10 pages, 6 figures, corrected some type mistakes (already corrected in PRD version

    Hadron production in non linear relativistic mean field models

    Full text link
    By using a parametrization of the non-linear Walecka model which takes into account the binding energy of different hyperons, we present a study of particle production yields measured in central Au-Au collision at RHIC. Two sets of different hyperon-meson coupling constants are employed in obtaining the hadron production and chemical freeze-out parameters. These quantities show a weak dependence on the used hyperon-meson couplings. Results are in good overall accordance with experimental data. We have found that the repulsion among the baryons is quite small and, through a preliminary analysis of the effective mesonic masses, we suggest a way to improve the fittings.Comment: 18 pages, 2 figure

    Singular solutions of fully nonlinear elliptic equations and applications

    Full text link
    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of Rn\mathbb{R}^n, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure

    Adjustment to colostomy: stoma acceptance, stoma care self-efficacy and interpersonal relationships

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2648.2007.04446.xThis paper is a report of a study to examine adjustment and its relationship with stoma acceptance and social interaction, and the link between stoma care self-efficacy and adjustment in the presence of acceptance and social interactions.Peer reviewe

    On the Circular Orbit Approximation for Binary Compact Objects In General Relativity

    Full text link
    One often-used approximation in the study of binary compact objects (i.e., black holes and neutron stars) in general relativity is the instantaneously circular orbit assumption. This approximation has been used extensively, from the calculation of innermost circular orbits to the construction of initial data for numerical relativity calculations. While this assumption is inconsistent with generic general relativistic astrophysical inspiral phenomena where the dissipative effects of gravitational radiation cause the separation of the compact objects to decrease in time, it is usually argued that the timescale of this dissipation is much longer than the orbital timescale so that the approximation of circular orbits is valid. Here, we quantitatively analyze this approximation using a post-Newtonian approach that includes terms up to order ({Gm/(rc^2)})^{9/2} for non-spinning particles. By calculating the evolution of equal mass black hole / black hole binary systems starting with circular orbit configurations and comparing them to the more astrophysically relevant quasicircular solutions, we show that a minimum initial separation corresponding to at least 6 (3.5) orbits before plunge is required in order to bound the detection event loss rate in gravitational wave detectors to < 5% (20%). In addition, we show that the detection event loss rate is > 95% for a range of initial separations that include all modern calculations of the innermost circular orbit (ICO).Comment: 10 pages, 12 figures, revtex

    Correlated Λd\Lambda d pairs from the Kstop−A→ΛdA′K^{-}_{stop} A \to \Lambda d A' reaction

    Full text link
    Correlated Λd\Lambda d pairs emitted after the absorption of negative kaons at rest Kstop−A→ΛdA′K^{-}_{stop}A\to \Lambda d A' in light nuclei 6Li^6Li and 12C^{12}C are studied. Λ\Lambda-hyperons and deuterons are found to be preferentially emitted in opposite directions. The Λd\Lambda d invariant mass spectrum of 6Li^6Li shows a bump whose mass is 3251±\pm6 MeV/c2^2. The bump mass (binding energy), width and yield are reported. The appearance of a bump is discussed in the realm of the [Kˉ3N\bar{K}3N] clustering process in nuclei. The experiment was performed with the FINUDA spectrometer at DAΦ\PhiNE (LNF).Comment: 13 pages, 5 figures, accepted for publication in Phys. Lett.

    Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension

    Full text link
    The qualitative behavior of a thermodynamically consistent two-phase Stefan problem with surface tension and with or without kinetic undercooling is studied. It is shown that these problems generate local semiflows in well-defined state manifolds. If a solution does not exhibit singularities in a sense made precise below, it is proved that it exists globally in time and its orbit is relatively compact. In addition, stability and instability of equilibria is studied. In particular, it is shown that multiple spheres of the same radius are unstable, reminiscent of the onset of Ostwald ripening.Comment: 56 pages. Expanded introduction, added references. This revised version is published in Arch. Ration. Mech. Anal. (207) (2013), 611-66

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure
    • …
    corecore