17 research outputs found

    Modified Extended BDF Time-Integration Methods, Applied to Circuit Equations

    Full text link

    Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens

    Get PDF
    SummaryBackgroundThe nasal vaccine candidate (NASVAC), comprising hepatitis B virus (HBV) surface (HBsAg) and core antigens (HBcAg), has been shown to be highly immunogenic in animal models.MethodsA phase I double-blinded, placebo-controlled randomized clinical trial was carried out in 19 healthy male adults with no serologic markers of immunity/infection to HBV. This study was aimed at exploring the safety and immunogenic profile of nasal co-administration of both HBV recombinant antigens. The trial was performed according to Good Clinical Practice guidelines. Participants ranged in age from 18 to 45 years and were randomly allocated to receive a mixture of 50μg HBsAg and 50μg HBcAg or 0.9% physiologic saline solution, as a placebo, via nasal spray in a five-dose schedule at 0, 7, 15, 30, and 60 days. A total volume of 0.5ml was administered in two dosages of 125μl per nostril. Adverse events were actively recorded 1h, 6h, 12h, 24h, 48h, 72h, 7 days and 30 days after each dose. Anti-HBs and anti-HBc titers were evaluated using corresponding ELISA kits at days 30 and 90.ResultsThe vaccine candidate was safe and well tolerated. Adverse reactions included sneezing (34.1%), rhinorrhea (12.2%), nasal stuffiness (9.8%), palate itching (9.8%), headache (9.8%), and general malaise (7.3%). These reactions were all self-limiting and mild in intensity. No severe or unexpected events were recorded during the trial. The vaccine elicited anti-HBc seroconversion in 100% of subjects as early as day 30 of the immunization schedule, while a seroprotective anti-HBs titer (≥10IU/l) was at a maximum at day 90 (75%). All subjects in the placebo group remained seronegative during the trial.ConclusionThe HBsAg–HBcAg vaccine candidate was safe, well tolerated and immunogenic in this phase I study in healthy adults. To our knowledge, this is the first demonstration of safety and immunogenicity for a nasal vaccine candidate comprising HBV antigens

    A combined beta-beam and electron capture neutrino experiment

    Get PDF
    The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, theta_{13}, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the beta-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase delta and the theta_{13} angle, the CP-discovery potential and the reach to determine the type of neutrino mass hierarchy for this type of long baseline experiment. The analysis is performed for different neutrino beam energies and baselines. Finally, we also discuss how the results would change if a better knowledge of some of the assumed parameters was achieved by the time this experiment could take place.Comment: 35 pp, 11 fig

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Kinetics of the drying process of an anti-adherent coating using Photothermal Radiometry and Micro-Raman

    No full text
    The kinetics of the drying process of a new anti-adherent (anti-graffiti) polymeric coating containing organic solvent was determined using Photothermal Radiometry (PTR) and Micro-Raman (μ\mu-R) Spectroscopy. PTR Spectroscopy was used to study, in real time, the kinetics of the drying process in samples protected with coatings with and without anti-adherent molecules. These were applied on a metal and silicon substrates. The PTR spectrum for coating without anti-adherent, shows a single relaxation time, while for coating containing anti-adherent shows two relaxation times corresponding to two different mechanisms: the solvent evaporation and the molecular re-arrangements of the two different molecular species present in the coating; the kinetic of the solvent evaporation is strongly dependent, as expected, on the solvent concentration
    corecore