16 research outputs found

    Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate

    No full text
    BACKGROUND: Retroviral involvement in amyotrophic lateral sclerosis (ALS) has been suspected for several years since the recognition that both murine and human retroviruses can cause ALS-like syndromes. Nonquantitative studies have demonstrated the retroviral enzyme reverse transcriptase (RT) in ALS patients' sera, but the amount and source of RT activity are unknown. We therefore developed a quantitative assay to study RT levels in ALS and examined the possibility that the recently discovered human gammaretrovirus XMRV (xenotropic MuLV-related virus) might be the source of the RT activity. METHODS: A quantitative product-enhanced RT assay was used to measure RT activity levels in serum and CSF. XMRV sequences were sought by PCR analysis of DNA and RNA extracted from blood. RESULTS: Fifty percent of ALS patients' sera contained >6 x 10(-8) RT units/mL as opposed to 7% of control sera (p = 0.008). The levels of RT activity in ALS patients were comparable to the levels observed in patients infected with HIV. RT activity was detected in only 1 of 25 CSF samples tested. XMRV sequences were not found in any of 25 nucleic acid extracts obtained from ALS patients' blood. CONCLUSIONS: These findings further support the concept of retroviral involvement in amyotrophic lateral sclerosis (ALS) and demonstrate that serum is more suitable than CSF for assay of reverse transcriptase (RT) activity in this disease. The levels of serum RT activity detected are comparable to those found in HIV infection. XMRV is not detectable in the blood of ALS patients, and the agent responsible for ALS-associated RT activity therefore remains unidentified

    Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives

    No full text
    These results confirm that patients with ALS have a significantly higher prevalence of serum reverse transcriptase (RT) activity than that seen in unrelated control subjects. The finding of a similarly increased prevalence in blood relatives of ALS patients raises the possibility that the observed RT activity might be due to an inherited endogenous retrovirus

    Being PRO-ACTive: What can a clinical trial database reveal about ALS?

    No full text
    Advancing research and clinical care, and conducting successful and cost-effective clinical trials requires characterizing a given patient population. To gather a sufficiently large cohort of patients in rare diseases such as amyotrophic lateral sclerosis (ALS), we developed the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) platform. The PRO-ACT database currently consists of >8600 ALS patient records from 17 completed clinical trials, and more trials are being incorporated. The database was launched in an open-access mode in December 2012; since then, >400 researchers from >40 countries have requested the data. This review gives an overview on the research enabled by this resource, through several examples of research already carried out with the goal of improving patient care and understanding the disease. These examples include predicting ALS progression, the simulation of future ALS clinical trials, the verification of previously proposed predictive features, the discovery of novel predictors of ALS progression and survival, the newly identified stratification of patients based on their disease progression profiles, and the development of tools for better clinical trial recruitment and monitoring. Results from these approaches clearly demonstrate the value of large datasets for developing a better understanding of ALS natural history, prognostic factors, patient stratification, and more. The increasing use by the community suggests that further analyses of the PRO-ACT database will continue to reveal more information about this disease that has for so long defied our understanding

    Trial of antisense oligonucleotide tofersen for SOD1 ALS

    No full text
    BACKGROUND The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale–Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was −6.98 with tofersen and −8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], −3.2 to 5.5; P=0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was −6.0 in the early-start cohort and −9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non–multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture–related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699. opens in new tab and NCT03070119. opens in new tab; EudraCT numbers, 2015-004098-33. opens in new tab and 2016-003225-41. opens in new tab.
    corecore