72 research outputs found
The affective modulation of motor awareness in anosognosia for hemiplegia:behavioural and lesion evidence
The possible role of emotion in anosognosia for hemiplegia (i.e., denial of motor deficits contralateral to a brain lesion), has long been debated between psychodynamic and neurocognitive theories. However, there are only a handful of case studies focussing on this topic, and the precise role of emotion in anosognosia for hemiplegia requires empirical investigation. In the present study, we aimed to investigate how negative and positive emotions influence motor awareness in anosognosia. Positive and negative emotions were induced under carefully-controlled experimental conditions in right-hemisphere stroke patients with anosognosia for hemiplegia (n = 11) and controls with clinically normal awareness (n = 10). Only the negative, emotion induction condition resulted in a significant improvement of motor awareness in anosognosic patients compared to controls; the positive emotion induction did not. Using lesion overlay and voxel-based lesion-symptom mapping approaches, we also investigated the brain lesions associated with the diagnosis of anosognosia, as well as with performance on the experimental task. Anatomical areas that are commonly damaged in AHP included the right-hemisphere motor and sensory cortices, the inferior frontal cortex, and the insula. Additionally, the insula, putamen and anterior periventricular white matter were associated with less awareness change following the negative emotion induction. This study suggests that motor unawareness and the observed lack of negative emotions about one's disabilities cannot be adequately explained by either purely motivational or neurocognitive accounts. Instead, we propose an integrative account in which insular and striatal lesions result in weak interoceptive and motivational signals. These deficits lead to faulty inferences about the self, involving a difficulty to personalise new sensorimotor information, and an abnormal adherence to premorbid beliefs about the body.</p
Defining vitamin D status using multi-metabolite mathematical modelling:a pregnancy perspective
Vitamin D deficiency is linked to adverse pregnancy outcomes such as pre-eclampsia (PET) but remains defined by serum measurement of 25-hydroxyvitamin D3 (25(OH)D3) alone. To identify broader changes in vitamin D metabolism during normal and PET pregnancies we developed a relatively simple but fully parametrised mathematical model of the vitamin D metabolic pathway. The data used for parametrisation were serum vitamin D metabolites analysed for a cross-sectional group of women (n = 88); including normal pregnant women at 1 st (NP1, n = 25) and 3rd trimester (NP3, n = 21) and pregnant women with PET (n = 22), as well as non-pregnant female controls (n = 20). To account for the effects various metabolites have upon each other, data were analysed using an ordinary differential equation model of the vitamin D reaction network. Information obtained from the model was then also applied to serum vitamin D metabolome data (n = 50) obtained from a 2nd trimester pregnancy cohort, of which 25 prospectively developed PET. Statistical analysis of the data alone showed no significant difference between NP3 and PET for serum 25(OH)D3 and 24,25(OH)2D3 concentrations. Conversely, a statistical analysis informed by the reaction network model revealed that a better indicator of PET is the ratios of vitamin D metabolites in late pregnancy. Assessing the potential predicative value, no significant difference between NP3 and PET cases at 15 weeks gestation was found. Mathematical modelling offers a novel strategy for defining the impact of vitamin D metabolism on human health. This is particularly relevant within the context of pregnancy, where major changes in vitamin D metabolism occur across gestation, and dysregulated metabolism is evidenced in women with established PET.</p
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of Atypical Meningioma: study protocol for a randomised controlled trial
BACKGROUND
Atypical meningiomas are an intermediate grade brain tumour with a recurrence rate of 39-58 %. It is not known whether early adjuvant radiotherapy reduces the risk of tumour recurrence and whether the potential side-effects are justified. An alternative management strategy is to perform active monitoring with magnetic resonance imaging (MRI) and to treat at recurrence. There are no randomised controlled trials comparing these two approaches.
METHODS/DESIGN
A total of 190 patients will be recruited from neurosurgical/neuro-oncology centres across the United Kingdom, Ireland and mainland Europe. Adult patients undergoing gross total resection of intracranial atypical meningioma are eligible. Patients with multiple meningioma, optic nerve sheath meningioma, previous intracranial tumour, previous cranial radiotherapy and neurofibromatosis will be excluded. Informed consent will be obtained from patients. This is a two-stage trial (both stages will run in parallel): Stage 1 (qualitative study) is designed to maximise patient and clinician acceptability, thereby optimising recruitment and retention. Patients wishing to continue will proceed to randomisation. Stage 2 (randomisation) patients will be randomised to receive either early adjuvant radiotherapy for 6 weeks (60 Gy in 30 fractions) or active monitoring. The primary outcome measure is time to MRI evidence of tumour recurrence (progression-free survival (PFS)). Secondary outcome measures include assessing the toxicity of the radiotherapy, the quality of life, neurocognitive function, time to second line treatment, time to death (overall survival (OS)) and incremental cost per quality-adjusted life year (QALY) gained.
DISCUSSION
ROAM/EORTC-1308 is the first multi-centre randomised controlled trial designed to determine whether early adjuvant radiotherapy reduces the risk of tumour recurrence following complete surgical resection of atypical meningioma. The results of this study will be used to inform current neurosurgery and neuro-oncology practice worldwide.
TRIAL REGISTRATION
ISRCTN71502099 on 19 May 2014
Sex differences in the associations between L-arginine pathway metabolites, skeletal muscle mass and function, and their responses to resistance exercise, in old age
This work was supported by the Biotechnology and Biological Sciences Research Council (BB/J015911/1) and was registered at clinicaltrials.gov (ClinicalTrials. gov Identifier: NCT02843009). Supplementary email included with articlePeer reviewedPostprin
Molecular and translational advances in meningiomas.
Meningiomas are the most common primary intracranial neoplasm. The current World Health Organization (WHO) classification categorizes meningiomas based on histopathological features, but emerging molecular data demonstrate the importance of genomic and epigenomic factors in the clinical behavior of these tumors. Treatment options for symptomatic meningiomas are limited to surgical resection where possible and adjuvant radiation therapy for tumors with concerning histopathological features or recurrent disease. At present, alternative adjuvant treatment options are not available in part due to limited historical biological analysis and clinical trial investigation on meningiomas. With advances in molecular and genomic techniques in the last decade, we have witnessed a surge of interest in understanding the genomic and epigenomic landscape of meningiomas. The field is now at the stage to adopt this molecular knowledge to refine meningioma classification and introduce molecular algorithms that can guide prediction and therapeutics for this tumor type. Animal models that recapitulate meningiomas faithfully are in critical need to test new therapeutics to facilitate rapid-cycle translation to clinical trials. Here we review the most up-to-date knowledge of molecular alterations that provide insight into meningioma behavior and are ready for application to clinical trial investigation, and highlight the landscape of available preclinical models in meningiomas
European Association of Neuro-Oncology guideline on molecular testing of meningiomas for targeted therapy selection
 Meningiomas are the most common primary intracranial tumors of adults. For meningiomas that progress or recur despite surgical resection and radiotherapy, additional treatment options are limited due to a lack of proven efficacy. Meningiomas show recurring molecular aberrations, which may serve as predictive markers for systemic pharmacotherapies with targeted drugs or immunotherapy, radiotherapy, or radioligand therapy. Here, we review the evidence for a predictive role of a wide range of molecular alterations and markers including NF2, AKT1, SMO, SMARCE1, PIK3CA, CDKN2A/B, CDK4/6, TERT, TRAF7, BAP1, KLF4,  ARID1/2, SUFU, PD-L1, SSTR2A, PR/ER, mTOR, VEGF(R), PDGFR, as well as homologous recombination deficiency, genomic copy number variations, DNA methylation classes, and combined gene expression profiles. In our assessment based on the established ESMO ESCAT (European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets) evidence-level criteria, no molecular target reached ESCAT I (“ready for clinical use”) classification, and only mTOR pathway activation and NF2 alterations reached ESCAT II (“investigational”) classification, respectively. Our evaluations may guide targeted therapy selection in clinical practice and clinical trial efforts and highlight areas for which additional research is warranted. MTG4Molecular tumour pathology - and tumour genetic
An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures
Anaplastic meningioma is a rare and aggressive brain tumor characterised by intractable recurrences and dismal outcomes. Here, we present an integrated analysis of the whole genome, transcriptome and methylation profiles of primary and recurrent anaplastic meningioma. A key finding was the delineation of distinct molecular subgroups that were associated with diametrically opposed survival outcomes. Relative to lower grade meningiomas, anaplastic tumors harbored frequent driver mutations in SWI/SNF complex genes, which were confined to the poor prognosis subgroup. Aggressive disease was further characterised by transcriptional evidence of increased PRC2 activity, stemness and epithelial-to-mesenchymal transition. Our analyses discern biologically distinct variants of anaplastic meningioma with prognostic and therapeutic significance
Imaging and diagnostic advances for intracranial meningiomas
The archetypal imaging characteristics of meningiomas are among the most stereotypic of all central nervous system (CNS) tumors. In the era of plain film and ventriculography, imaging was only performed if a mass was suspected, and their results were more suggestive than definitive. Following more than a century of technological development, we can now rely on imaging to non-Invasively diagnose meningioma with great confidence and precisely delineate the locations of these tumors relative to their surrounding structures to inform treatment planning. Asymptomatic meningiomas may be identified and their growth monitored over time; moreover, imaging routinely serves as an essential tool to survey tumor burden at various stages during the course of treatment, thereby providing guidance on their effectiveness or the need for further intervention. Modern radiological techniques are expanding the power of imaging from tumor detection and monitoring to include extraction of biologic information from advanced analysis of radiological parameters. These contemporary approaches have led to promising attempts to predict tumor grade and, in turn, contribute prognostic data. In this supplement article, we review important current and future aspects of imaging in the diagnosis and management of meningioma, including conventional and advanced imaging techniques using CT, MRI, and nuclear medicine
Advances in multidisciplinary therapy for meningiomas
Surgery has long been established as the first-line treatment for the majority of symptomatic and enlarging meningiomas, and evidence for its success is derived from retrospective case series. Despite surgical resection, a subset of meningiomas display aggressive behavior with early recurrences that are difficult to treat. The decision to radically resect meningiomas and involved structures is balanced against the risk for neurological injury in patients. Radiation therapy has largely been used as a complementary and safe therapeutic strategy in meningiomas with evidence primarily stemming from retrospective, single-Institution reports. Two of the first cooperative group studies (RTOG 0539 and EORTC 22042) evaluating the outcomes of adjuvant radiation therapy in higher-risk meningiomas have shown promising preliminary results. Historically, systemic therapy has resulted in disappointing results in meningiomas. However, several clinical trials are under way evaluating the efficacy of chemotherapies, such as trabectedin, and novel molecular agents targeting Smoothened, AKT1, and focal adhesion kinase in patients with recurrent meningiomas
- …
