81 research outputs found
Solar Neutrino Precision Measurements using all 1496 Days of Super-Kamiokande-I Data
The results of the entire Super-Kamiokande-I solar neutrino data are
presented. The measured interaction rate is 47+-2% of the rate expected by the
standard solar model and 133+-5% of the rate implied by the SNO charged-current
interaction rate. There is no evidence for spectral distortion or a time
dependent neutrino flux. Together with the rates of other experiments, the
Super-Kamiokande results imply active solar neutrino oscillations and restrict
neutrino mixing and mass square difference to lie within the LMA solution area.Comment: to be published in the Proceedings of the XXth International
Confernece on Neutrino Physics and Astrophysics 8 pages, 11 figure
Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data
We review the status of nu_mu-->nu_tau flavor transitions of atmospheric
neutrinos in the 92 kton-year data sample collected in the first phase of the
Super-Kamiokande (SK) experiment, in combination with the recent spectral data
from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring
muon events). We consider a theoretical framework which embeds flavor
oscillations plus hypothetical decoherence effects, and where both standard
oscillations and pure decoherence represent limiting cases. It is found that
standard oscillations provide the best description of the SK+K2K data, and that
the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1)
as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As
compared with standard oscillations, the case of pure decoherence is
disfavored, although it cannot be ruled out yet. In the general case,
additional decoherence effects in the nu_mu-->nu_tau channel do not improve the
fit to the SK and K2K data, and upper bounds can be placed on the associated
decoherence parameter. Such indications, presently dominated by SK, could be
strengthened by further K2K data, provided that the current spectral features
are confirmed with higher statistics. A detailed description of the statistical
analysis of SK and K2K data is also given, using the so-called ``pull''
approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript
Robust signatures of solar neutrino oscillation solutions
With the goal of identifying signatures that select specific neutrino
oscillation parameters, we test the robustness of global oscillation solutions
that fit all the available solar and reactor experimental data. We use three
global analysis strategies previously applied by different authors and also
determine the sensitivity of the oscillation solutions to the critical nuclear
fusion cross section, S_{17}(0), for the production of 8B. The favored
solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to
charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is
separated from the no-oscillation value of 1.0 by much more than the expected
experimental error. The predicted range of the day-night difference in charged
current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night
effect for neutrino-electron scattering. A measurement by SNO of either a NC to
CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of
the currently allowed LMA neutrino parameter space. The global oscillation
solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and
KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a
prediction which can be used to test both the solar model and the neutrino
oscillation theory. Only the LOW solution predicts a large day-night effect(<
42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA
solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3
sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to
include 1496 days of Super-Kamiokande observation
Unified graphical summary of neutrino mixing parameters
The neutrino mixing parameters are presented in a number of different ways by the various experiments, e.g., SuperKamiokande, K2K, SNO, KamLAND, and CHOOZ, and also by the Particle Data Group. In this paper, we argue that presenting the data in terms of sin(2)theta, where theta is the mixing angle appropriate for a given experiment, has a direct physical interpretation. For current atmospheric, solar, and reactor neutrino experiments, the sin(2)theta's are effectively the probabilities of finding a given flavor in a particular neutrino mass eigenstate. The given flavor and particular mass eigenstate vary from experiment to experiment; however, the use of sin(2)theta provides a unified picture of all the data. Using this unified picture we present a graphical way to represent these neutrino mixing parameters which includes the uncertainties. All of this is performed in the context of the present experimental status of three neutrino oscillations
Resonant leptogenesis in a predictive SO(10) grand unified model
An SO(10) grand unified model considered previously by the authors featuring
lopsided down quark and charged lepton mass matrices is successfully predictive
and requires that the lightest two right-handed Majorana neutrinons be nearly
degenerate in order to obtain the LMA solar neutrino solution. Here we use this
model to test its predictions for baryogenesis through resonant-enhanced
leptogenesis. With the conventional type I seesaw mechanism, the best
predictions for baryogenesis appear to fall a factor of three short of the
observed value. However, with a proposed type III seesaw mechanism leading to
three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is
decoupled from the neutrino mass and mixing issues with successful baryogenesis
easily obtained.Comment: 22 pages including 1 figure; published version with reference adde
Self-shielding effect of a single phase liquid xenon detector for direct dark matter search
Liquid xenon is a suitable material for a dark matter search. For future
large scale experiments, single phase detectors are attractive due to their
simple configuration and scalability. However, in order to reduce backgrounds,
they need to fully rely on liquid xenon's self-shielding property. A prototype
detector was developed at Kamioka Observatory to establish vertex and energy
reconstruction methods and to demonstrate the self-shielding power against
gamma rays from outside of the detector. Sufficient self-shielding power for
future experiments was obtained.Comment: 8 pages, 8 figure
Constraints on Large Extra Dimensions with Bulk Neutrinos
We consider right-handed neutrinos propagating in (large) extra
dimensions, whose only coupling to Standard Model fields is the Yukawa coupling
to the left-handed neutrino and the Higgs boson. These theories are attractive
as they can explain the smallness of the neutrino mass, as has already been
shown. We show that if is bigger than two, there are strong
constraints on the radius of the extra dimensions, resulting from the
experimental limit on the probability of an active state to mix into the large
number of sterile Kaluza-Klein states of the bulk neutrino. We also calculate
the bounds on the radius resulting from requiring that perturbative unitarity
be valid in the theory, in an imagined Higgs-Higgs scattering channel.Comment: 24 pages, 4 figures, revtex4. v2: Minor typos corrected, references
adde
Inflationary Cosmology with Five Dimensional SO(10)
We discuss inflationary cosmology in a five dimensional SO(10) model
compactified on , which yields below the compactification scale. The gauge
symmetry is preserved on one of the fixed points, while
``flipped'' is on the other fixed point. Inflation is
associated with breaking, and is implemented through -term scalar
potentials on the two fixed points. A brane-localized Einstein-Hilbert term
allows both branes to have positive tensions during inflation. The scale of
breaking is fixed from measurements to be around
GeV, and the scalar spectral index . The inflaton field
decays into right-handed neutrinos whose subsequent out of equilibrium decay
yield the observed baryon asymmetry via leptogenesis.Comment: 1+19 pages, improved discussion of 5D cosmology, Version to appear in
PR
A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I
A search for periodic modulations of the solar neutrino flux was performed
using the Super-Kamiokande-I data taken from May 31st, 1996 to July 15th, 2001.
The detector's capability of measuring the exact time of events, combined with
a relatively high yield of solar neutrino events, allows a search for
short-time variations in the observed flux. We employed the Lomb test to look
for periodic modulations of the observed solar neutrino flux. The obtained
periodogram is consistent with statistical fluctuation and no significant
periodicity was found
Search for Neutral Q-balls in Super-Kamiokande II
A search for Q-balls induced groups of successive contained events has been
carried out in Super-Kamiokande II with 541.7 days of live time.
Neutral Q-balls would emit pions when colliding with nuclei, generating a
signal of successive contained pion events along a track. No candidate for
successive contained event groups has been found in Super-Kamiokande II, so
upper limits on the possible flux of such Q-balls have been obtained.Comment: 5 pages, 5 figures, Submitted to Phys. Lett.
- …