620 research outputs found

    Stochastic field evolution of disoriented chiral condensates

    Get PDF
    I present a summary of recent work \cite{BRS} where we describe the time-evolution of a region of disoriented chiral condensate via Langevin field equations for the linear σ\sigma model. We analyze the model in equilibrium, paying attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counterparts. We use results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a ultraviolet cutoff independent theory that reproduces quantitatively the expected equilibrium behavior of pion and σ\sigma quantum fields. We also estimate the viscosity η(T)\eta(T), which controls the dynamical timescale in the Langevin equation, so that the near equilibrium dynamical response agrees with theoretical expectations.Comment: 3 pages, 3 figures, contribution to the proceedings of Lattice0

    Quark Effects in the Gluon Condensate Contribution to the Scalar Glueball Correlation Function

    Full text link
    One-loop quark contributions to the dimension-four gluon condensate term in the operator product expansion (OPE) of the scalar glueball correlation function are calculated in the MS-bar scheme in the chiral limit of nfn_f quark flavours. The presence of quark effects is shown not to alter the cancellation of infrared (IR) singularities in the gluon condensate OPE coefficients. The dimension-four gluonic condensate term represents the leading power corrections to the scalar glueball correlator and, therein, the one-loop logarithmic contributions provide the most important condensate contribution to those QCD sum-rules independent of the low-energy theorem (the subtracted sum-rules).Comment: latex2e, 6 pages, 7 figures embedded in latex fil

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Resultant pressure distribution pattern along the basilar membrane in the spiral shaped cochlea

    Full text link
    Cochlea is an important auditory organ in the inner ear. In most mammals, it is coiled as a spiral. Whether this specific shape influences hearing is still an open problem. By employing a three dimensional fluid model of the cochlea with an idealized geometry, the influence of the spiral geometry of the cochlea is examined. We obtain solutions of the model through a conformal transformation in a long-wave approximation. Our results show that the net pressure acting on the basilar membrane is not uniform along its spanwise direction. Also, it is shown that the location of the maximum of the spanwise pressure difference in the axial direction has a mode dependence. In the simplest pattern, the present result is consistent with the previous theory based on the WKB-like approximation [D. Manoussaki, Phys. Rev. Lett. 96, 088701(2006)]. In this mode, the pressure difference in the spanwise direction is a monotonic function of the distance from the apex and the normal velocity across the channel width is zero. Thus in the lowest order approximation, we can neglect the existance of the Reissner's membrane in the upper channel. However, higher responsive modes show different behavior and, thus, the real maximum is expected to be located not exactly at the apex, but at a position determined by the spiral geometry of the cochlea and the width of the cochlear duct. In these modes, the spanwise normal velocities are not zero. Thus, it indicates that one should take into account of the detailed geometry of the cochlear duct for a more quantitative result. The present result clearly demonstrates that not only the spiral geometry, but also the geometry of the cochlear duct play decisive roles in distributing the wave energy.Comment: 21 pages. (to appear in J. Biol. Phys.

    Langevin Evolution of Disoriented Chiral Condensate

    Full text link
    As the matter produced in a relativistic heavy ion collision cools through the QCD phase transition, the dynamical evolution of the chiral condensate will be driven out of thermal equilibrium. As a prelude to analyzing this evolution, and in particular as a prelude to learning how rapid the cooling must be in order for significant deviations from equilibrium to develop, we present a detailed analysis of the time-evolution of an idealized region of disoriented chiral condensate. We set up a Langevin field equation which can describe the evolution of these (or more realistic) linear sigma model configurations in contact with a heat bath representing the presence of other shorter wavelength degrees of freedom. We first analyze the model in equilibrium, paying particular attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counterparts. We use known results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a theory which is ultraviolet cutoff independent and that reproduces quantitatively the expected equilibrium behavior of the quantum field theory of pions and sigma fields over a wide range of temperatures. Finally, we estimate the viscosity η(T)\eta(T), which controls the dynamical timescale in the Langevin equation, by requiring that the timescale for DCC decay agrees with previous calculations. The resulting η(T)\eta(T) is larger than that found perturbatively. We also determine the temperature below which the classical field Langevin equation ceases to be a good model for the quantum field dynamics.Comment: 19 pages, 7 figures, uses RevTex; v2 very small change to the caption of Fig.7. Version to appear in Nucl. phys.

    Current correlators to all orders in the quark masses

    Full text link
    The contributions to the coefficient functions of the quark and the mixed quark-gluon condensate to mesonic correlators are calculated for the first time to all orders in the quark masses, and to lowest order in the strong coupling constant. Existing results on the coefficient functions of the unit operator and the gluon condensate are reviewed. The proper factorization of short- and long-distance contributions in the operator product expansion is discussed in detail. It is found that to accomplish this task rigorously the operator product expansion has to be performed in terms of non-normal-ordered condensates. The resulting coefficient functions are improved with the help of the renormalization group. The scale invariant combination of dimension 5 operators, including mixing with the mass operator, which is needed for the renormalization group improvement, is calculated in the leading order.Comment: 24 pages, LateX file, TUM-T31-21/92, 1 postscript file include

    Photoionisation loading of large Sr+ ion clouds with ultrafast pulses

    Get PDF
    This paper reports on photoionisation loading based on ultrafast pulses of singly-ionised strontium ions in a linear Paul trap. We take advantage of an autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption of femtosecond pulses at a wavelength of 431nm. We compare this technique to electron-bombardment ionisation and observe several advantages of photoionisation. It actually allows the loading of a pure Sr+ ion cloud in a low radio-frequency voltage amplitude regime. In these conditions up to 4x10^4 laser-cooled Sr+ ions were trapped

    Improved Determination of the Mass of the 1−+1^{-+} Light Hybrid Meson From QCD Sum Rules

    Get PDF
    We calculate the next-to-leading order (NLO) αs\alpha_s-corrections to the contributions of the condensates and 2^2 in the current-current correlator of the hybrid current g\barq(x)\gamma_{\nu}iF_{\mu\nu}^aT^aq(x) using the external field method in Feynman gauge. After incorporating these NLO contributions into the Laplace sum-rules, the mass of the JPCJ^{PC}=1−+1^{-+} light hybrid meson is recalculated using the QCD sum rule approach. We find that the sum rules exhibit enhanced stability when the NLO αs\alpha_s-corrections are included in the sum rule analysis, resulting in a 1−+1^{-+} light hybrid meson mass of approximately 1.6 GeV.Comment: revtex4, 10 pages, 7 eps figures embedded in manuscrip
    • 

    corecore