764 research outputs found
Spatial Degrees of Freedom in Everett Quantum Mechanics
Stapp claims that, when spatial degrees of freedom are taken into account,
Everett quantum mechanics is ambiguous due to a "core basis problem." To
examine an aspect of this claim I generalize the ideal measurement model to
include translational degrees of freedom for both the measured system and the
measuring apparatus. Analysis of this generalized model using the Everett
interpretation in the Heisenberg picture shows that it makes unambiguous
predictions for the possible results of measurements and their respective
probabilities. The presence of translational degrees of freedom for the
measuring apparatus affects the probabilities of measurement outcomes in the
same way that a mixed state for the measured system would. Examination of a
measurement scenario involving several observers illustrates the consistency of
the model with perceived spatial localization of the measuring apparatus.Comment: 34 pp., no figs. Introduction, discussion revised. Material
tangential to main point remove
Domain Bubbles of Extra Dimensions
``Dimension bubbles'' of the type previously studied by Blau and Guendelman
[S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively
enclose a region of 5d spacetime and are surrounded by a region of 4d
spacetime, can arise in a 5d theory with a compact extra dimension that is
dimensionally reduced to give an effective 4d theory. These bubbles with thin
domain walls can be stabilized against total collapse in a rather natural way
by a scalar field which, as in the case with ``ordinary'' nontopological
solitons, traps light scalar particles inside the bubble.Comment: 13 pages, no figures; to appear in Phys.Rev.
Fermionic and Bosonic Stabilizing Effects for Type I and Type II Dimension Bubbles
We consider two types of "dimension bubbles", which are viewed as 4d
nontopological solitons that emerge from a 5d theory with a compact extra
dimension. The size of the extra dimension varies rapidly within the domain
wall of the soliton. We consider the cases of type I (II) bubbles where the
size of the extra dimension inside the bubble is much larger (smaller) than
outside. Type I bubbles with thin domain walls can be stabilized by the
entrapment of various particle modes whose masses become much smaller inside
than outside the bubble. This is demonstrated here for the cases of scalar
bosons, fermions, and massive vector bosons, including both Kaluza-Klein zero
modes and Kaluza-Klein excitation modes. Type II bubbles expel massive particle
modes but both types can be stabilized by photons. Plasma filled bubbles
containing a variety of massless or nearly massless radiation modes may exist
as long-lived metastable states. Furthermore, in contrast to the case with a
"gravitational bag", the metric for a fluid-filled dimension bubble does not
exhibit a naked singularity at the bubble's center.Comment: 17 pages, no figs; to appear in Phys.Rev.
Graviton emission from a higher-dimensional black hole
We discuss the graviton absorption probability (greybody factor) and the
cross-section of a higher-dimensional Schwarzschild black hole (BH). We are
motivated by the suggestion that a great many BHs may be produced at the LHC
and bearing this fact in mind, for simplicity, we shall investigate the
intermediate energy regime for a static Schwarzschild BH. That is, for
, where is the mass of the black hole and
is the energy of the emitted gravitons in -dimensions. To find
easily tractable solutions we work in the limit , where is the
angular momentum quantum number of the graviton.Comment: 10 pages, 8 figures, references added, typos corrected. Graviton
degeneracy factor included; main results remain unchange
Gauged Dimension Bubbles
Some of the peculiar electrodynamical effects associated with gauged
``dimension bubbles'' are presented. Such bubbles, which effectively enclose a
region of 5d spacetime, can arise from a 5d theory with a compact extra
dimension. Bubbles with thin domain walls can be stabilized against total
collapse by the entrapment of light charged scalar bosons inside the bubble,
extending the idea of a neutral dimension bubble to accommodate the case of a
gauged U(1) symmetry. Using a dielectric approach to the 4d dilaton-Maxwell
theory, it is seen that the bubble wall is almost totally opaque to photons,
leading to a new stabilization mechanism due to trapped photons. Photon
dominated bubbles very slowly shrink, resulting in a temperature increase
inside the bubble. At some critical temperature, however, these bubbles
explode, with a release of radiation.Comment: 14 pages, no figures; to appear in Phys.Rev.
Exercise Degrades Bone in Caloric Restriction, Despite Suppression of Marrow Adipose Tissue (MAT)
Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by ÎŒCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p <; 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (â121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone
Observers and Locality in Everett Quantum Field Theory
A model for measurement in collapse-free nonrelativistic fermionic quantum
field theory is presented. In addition to local propagation and
effectively-local interactions, the model incorporates explicit representations
of localized observers, thus extending an earlier model of entanglement
generation in Everett quantum field theory [M. A. Rubin, Found. Phys. 32,
1495-1523 (2002)]. Transformations of the field operators from the Heisenberg
picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields,
establish the locality of the model. The model is applied to manifestly-local
calculations of the results of measurements, using a type of sudden
approximation and in the limit of massive systems in narrow-wavepacket states.
Detection of the presence of a spin-1/2 system in a given spin state by a
freely-moving two-state observer illustrates the features of the model and the
nonperturbative computational methodology. With the help of perturbation theory
the model is applied to a calculation of the quintessential "nonlocal" quantum
phenomenon, spin correlations in the Einstein-Podolsky-Rosen-Bohm experiment.Comment: Some changes to introduction and discussion sections, typos
corrected, conclusions unchanged. To appear in Foundations of Physic
Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles
The fragile structure of chondritic-porous interplanetary dust particles (CP-
IDPs) and their minimal parent-body alteration have led researchers to believe
these particles originate in comets rather than asteroids where aqueous and
thermal alteration have occurred. The solar elemental abundances and
atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the
return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this
hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs
and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We
analyzed ~300 nanograms of Wild 2 material - three orders of magnitude more
material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation
state of these two samples of material are >2{\sigma} different: the CP-IDPs
are more oxidized than the Wild 2 grains. We conclude that comet Wild 2
contains material that formed at a lower oxygen fugacity than the parent body,
or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do
not appear to be consistent with the origin of CP-IDPs. However, comets that
formed from a different mix of nebular material and are more oxidized than Wild
2 could be the source of CP-IDPs.Comment: Earth and Planetary Science Letters, in pres
On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations
The two-dimensional unsteady coupled Burgers' equations with moderate to
severe gradients, are solved numerically using higher-order accurate finite
difference schemes; namely the fourth-order accurate compact ADI scheme, and
the fourth-order accurate Du Fort Frankel scheme. The question of numerical
stability and convergence are presented. Comparisons are made between the
present schemes in terms of accuracy and computational efficiency for solving
problems with severe internal and boundary gradients. The present study shows
that the fourth-order compact ADI scheme is stable and efficient
- âŠ