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ABSTRACT
Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether
exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and
MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were
allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less
than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001).
CR was associated with decreased bone by μCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E,
Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in
CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms
of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD,
p < 0.05, and also suppressed MAT in CR (−121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT
by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost
in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker
of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to
supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and
Mineral Research published by American Society for Bone and Mineral Research.
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Introduction

Marrow adipose tissue (MAT) accumulation was initially
detected in the 1970s by Meunier and colleagues in ortho-

pedic surgical specimens of osteoporotic patients as well as in
the setting of normal aging.(1) These first findings impelled
research into the significance of bone marrow adipocytes for
skeletal health. MAT, derived from the differentiation of mesen-
chymal stem cells (MSC) into adipocytes, increases in bone-
fragility states; however, its potential role in promoting bone
formation and/or resorption has not been elucidated, despite active
investigation.(2–11) Understanding of MAT has improved with quan-
tification methods that permit exact investigations, including mag-
netic resonance spectroscopy (MRS) in humans(12–15) as well as
osmium-μCT and MRI with advanced image processing in
rodents.(16–18) Recent work established MAT to be suppressed by

exercise, in rodents(16,18) and humans,(19) suggesting that MAT
may function similarly to white adipose tissue in a calorie-replete
state as an energy depot. Moreover, fatty acid β-oxidation markers
rise in bone in the setting of exercise, concomitant with increased
bone quantity; this along with research(9,20) demonstrating the reli-
ance of the osteoblast on β-oxidation support MAT’s role as an
energy depot.

In addition to aging-associated osteoporosis, MAT appears to
increase in the fragile bone states of anorexia in humans and
caloric restriction in mice. As nutrient stores in caloric restriction
wane, gluconeogenesis provides energy(21–25) and fat stores are
mobilized as an alternate fuel source.(26,27) In late caloric restric-
tion, white fat stores are depleted, highlighting the conundrum
of persistent marrow adipocytes.(28,29) Although marrow fat
accumulation in the energy-depleted state has been shown in
humans by marrow aspirate(30) or MRS(31) and rodents via
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histology and MRS,(32) studies lacked 3-dimentional valuation of
MAT. Prospective caloric restriction studies are unlikely to receive
institutional review board approval and thus, in humans, we
largely rely on retrospective or cohort studies, limiting data qual-
ity. Imaging and bone biopsies in human studies are difficult to
obtain, further dictating a need for animal studies. Thus, rigorous
measures of MAT response to caloric restriction are needed.

We have shown that MAT increases with overfeeding and
decreases during exercise.(17,18) This supports that MAT functions
as an accessible energy depot. In addition to the paucity of data
for MAT quantity and localization in states of caloric restriction,
its physiology in this setting is poorly understood. The patho-
logic bone loss due to anorexia/caloric restriction shows a mini-
mal anabolic-bone response to exercise and maintains a
significant fracture risk for years after successful weight
gain.(33–35) This stands in contrast to the exercise effect to
increase bone formation while decreasing resorption in the
calorie-replete state.(36–45) We thus hypothesized that in caloric
restriction, MAT’s physiologic role differs from the calorie-replete
state. The reports of increased MAT in calorie restriction,(28,29)

combined with increased fracture risk, suggest that the MAT
energy depot may be subverted in the energy-depleted state.
Indeed, a high level of physical activity—in combination with
caloric restriction—likely results in a decline in overall
health,(46) based on Potzner’s constrained energy expenditure
model.(47) Accordingly, we asked if exercise might be harmful
to skeletal health in the setting of caloric restriction, simulta-
neous with exact quantification and characterization of the phys-
iologic response of MAT and bone.

Our findings confirmed that exercise in the setting of a calorie
deficit is harmful to bone health. We observed a degradation of
bone in exercised, calorically restricted mice. Interestingly, MAT
decreased in CR-exercisers compared with CR, and this was sig-
nificant, suggesting an alternative purpose for the marrow fat
depot in the setting of caloric restriction. Further, reduced scler-
ostin (Sost) and TRAP during caloric restriction reflected a low
bone turnover state. Both rose during exercise in calorie restric-
tion. Lastly, we noted that CD36, responsible for fatty acid
uptake, was significantly upregulated in caloric restriction, sup-
plying a prospective mechanism by which MAT expands in this
state.

Materials and Methods

Animals, diet, and exercise intervention

Procedures were approved by the University of North Carolina
Institutional Animal Care and Use Committee. Eleven-week-old
C57BL/6 (B6) female mice (Jackson Laboratory, Bar Harbor, ME,
USA) were housed in controlled light and temperature condi-
tions. Individually housed mice were randomly allocated to an
ad libitum regular diet (RD) group or a 30% caloric restriction
(CR) group for 6 weeks (#D12450J, Research Diets, New Bruns-
wick, NJ, USA, containing 10% of the calories from fat and the
corresponding, nutrient-enriched CR diet, #D15032801). Both
RD and CR diets contain 10% of the calories from fat. The CR diet
is based on RD but modified as a daily allotment to provide 70%
of the caloric intake as well as100% of vitamins and minerals.(48)

Concomitant with dietary intervention, mice were further allo-
cated to voluntary running wheel exercise (E) for 6 weeks as pre-
viously described.(16–18) Both RD-E and CR-E mice ran during the
6 weeks of wheel access. We did not exclude mice as all runners
took part in voluntary running daily. Cyclometers record the daily

distance as well as average velocity as in Styner and
colleagues.(17)

Volumetric quantification and imaging of MAT by MRI

Imaging using a 9.4 T horizontal small-bore MRI scanner was
applied to quantify MAT volumetrically.(17) Briefly, femoral water
and fat maps were obtained with a 2-dimensional RARE imaging
sequence with the following parameters: RARE factor = 4,
TE = 28 ms, TR = 4000 ms, number of averages = 4, number of
slices = 24, slice thickness = 0.5 mm, in-plane resolu-
tion = 100 × 100 μm2, matrix size = 130 × 130. As fat and water
protons have an NMR frequency separation of 3.5 ppm, a
Gaussian-shaped 90� saturation pulse with a width of 2 ms was
applied preceding the RARE sequence to suppress fat or water
signal while leaving the other signal unaffected. Fat and water
images were acquired by setting the saturation pulse frequency
the same as the water and fat frequencies, respectively.

In our processing workflow, we manually subdivided full
images containing samples into individual images for each bone.
Then, we employed water images to manually contour femoral
bone masks using Insight SNAP.(49) Using these masks, interior
bone regions were masked from other image parts in both water
and fat maps. Next, a common, study-specific reference space
was established by computing an unbiased average image(50)

from the masked water maps using the ANTS registration soft-
ware.(51) Individual water and fat maps were propagated into
the common space, where voxel-wise correspondence allows
direct comparison of intensities. Average fat maps for each
group were computed in the common space and superimposed
on the common, average water image for visualization of group
fat maps. Fat map intensities were represented with a colored
heat map in 3D Slicer(49) for visualization (as in Fig. 3A, B). For
MAT quantification (as in Fig. 3C), a regional label map of the
femur was created, excluding cortical bone regions, for the
epiphysis, metaphysis, and diaphysis. The femoral head was
excluded from the final analysis due to variability in the bone
shape/volume between specimens. Intensity-weighted volume
of MAT was quantified via regional fat histograms as in Styner
and colleagues.(17)

Histomorphometry

Fixed and decalcified femurs were imbedded in paraffin, sec-
tioned at 5 μm, and stained with hematoxylin as previously
described.(17,52) Imaging was performed via the Olympus
X81 at 4× and 40× magnifications. The 40× magnification
images were obtained at the distal femoral growth plate, where
lipid content is maximal. ImageJ was used to isolate adipocytes
and quantify adipocyte size and number.(17,53) This process was
applied to 3 animals/group and 3 sections/animal, with a mini-
mum of 300 cells analyzed per experimental group. For osteo-
clast quantification, sections were stained for TRAP with a Fast
Green (Sigma, St. Louis, MO, USA, F7252-5G) background stain.
Analysis for osteoclast number was performed using the open
source applications Image J and TrapHisto.(54)

Bone microarchitecture

Bone microarchitecture parameters of the proximal tibial meta-
physis and mid-diaphysis were quantified ex vivo as previously
described (resolution = 12 μm, E = 55 kVa, I = 145 μA).(17,55–57)
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Real-time PCR

Quantitative PCR was performed as previously described.(16,18,58–60)

Briefly, 1 μg ofmRNA fromwhole tibia was reverse-transcribed. Ten
microliters of cDNA from each experimental condition were pooled
and diluted 1:10 to 1:10,000 to generate a 5-point standard curve.
A non-template control was added to each PCR reaction. Standards
and samples were run in duplicate. PCR products were normalized
to GAPDH.

Statistical analysis

Statistical significance was assessed by two-way ANOVA with
correction for multiple comparisons via a Tukey post hoc test
(GraphPad Prism 7.0, GraphPad, La Jolla, CA, USA), applying exer-
cise and dietary intervention as analysis variables. Our data sets
passed the Shapiro–Wilk normality test. The p value cut-off for
significance is defined at less than or equal to 0.05.

Results

Caloric restriction attenuates white adipose tissue and
body weight

To investigate marrow adiposity in caloric restriction and its rel-
evance to skeletal health, B6 mice assigned to a 30% caloric
restriction (CR) versus regular diet (RD) were further allocated
to voluntary exercise (E) versus sedentary control group. Running
distance was similar between the groups (Fig. 1C, RD-E
10.8 � 6.6, CR-E 10.03 � 3.8, p = ns), with individual variability
noted, consistent with other rodent studies applying a voluntary
running exercise intervention.(61,62) Running speed was also like-
wise similar between groups (Fig. 1C).

After 6 weeks, calorically restricted mice weighed 20% less
than RD, p < 0.0001; exercise did not significantly affect weight
(Fig. 1A). The gonadal fat pad weight % was 31% lower in CR

compared with RD (Fig. 1D). The fat pad weight was significantly
reduced applying diet as the main effect by 2-way ANOVA
(p = 0.004 for fat pad weight, p = 0.015 for fat pad weight %).
Thus, CR mice had demonstrably lower fat pad weights in this
analysis. Exercise, when applied as a main effect, failed to signif-
icantly affect fat pad weight or fat pad weight %.

Cortical and trabecular bone is degraded by exercise in
caloric restriction

Consistent with preclinical and clinical studies, trabecular micro-
architecture measured in the tibia via μCT demonstrated
reduced bone quantity in caloric restriction (Tb.Th −16% in CR
versus RD, p < .001; Tb.Th −45% in CR-E versus RD-E,
p < 0.0001, Fig. 2A). Cortical parameters such as cortical thickness
and cortical area fraction were similarly decreased in CR. An ana-
bolic response to exercise in the calorie-replete RD mice was
found, consistent with prior work.(16–18) Specifically, RD mice
showed a 27% increase in Tb.Th in response to exercise
(p < 0.0001, Fig. 2A). In contrast, the calorie-restricted group
demonstrated degraded bone parameters with exercise:
reduced trabecular number (−45% CR-E versus RD-E, p = 0.002)
as well as increased cortical porosity (+26% CR-E versus RD-E,
p = .05; +28%, CR-E versus CR p = 0.04, Fig. 2B). Thus, the
response of CR bone to exercise veers sharply from the positive
anabolic response of RD runners. This suggests that a calorie-
replete state is required for exercise-induced skeletal anabolism.
Moreover, exercise-induced suppression of MAT may mobilize
bone lipid for lipolysis; however, it is unlikely to serve as an
energy store for bone formation in CR.

Exercise reduced marrow adipose tissue volume in the
setting of caloric restriction

We next turned to the question of whether MAT is quantifiably
increased in mice in the setting of caloric restriction. We also

Fig. 1. Caloric restriction reduces body and perigonadal fat pad weight. B6 mice after 6 weeks of 30% caloric restriction (CR) versus regular diet (RD) +/−
running exercise (E) (4 groups, n = 7–10/group). (A) Body weight. (B) Food intake (g/d). (C) Running distance (km/d) and average running velocity (km/hr).
(D) Fat pad weight. Mean � SD. Significance by 2-way ANOVA or t test.
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sought to find if exercise might attenuate MAT in CR as previ-
ously shown in a calorie-replete state.(16,18) MAT was quantified
by means of volumetric magnetic resonance imaging (MRI),
which allows separation of the nuclear magnetic resonance sig-
nals from water and fat, along with bone masking, allowing a
precise quantification of MAT relative to bone volume in murine
femurs.(17) Average group femur MR images (n = 6–9/group,
Fig. 3A, B) display the distribution of MAT in the femur with a
higher MAT signal in the metaphysis/epiphysis in the calorically
restricted group. As expected, and corresponding to body
weight measurements, bone volume (BV) measured 21% lower
in CR versus RD (p = 0.04) and 19% lower in CR-E versus RD-E
(p = 0.03, Fig. 3C). Total femoral MAT/BV in CR, in contrast to
white adipose tissue, increases (+132%, p = 0.0009), with individ-
ual regions such as the distal epiphysis, metaphysis, and diaphy-
sis demonstrating a significant increase as well (Fig. 3C). Notably,
while the MAT content increased with CR in multiple regions, it
was most evident in the metaphysis (+159%, p = 0.003, Fig. 3C).
In response to exercise, whole bone MAT/BV diminished signifi-
cantly in both experimental groups (RD-E versus RD: –28%, CR-
E versus CR: −92%, p = 0.01 for an exercise effect, Fig. 3C), akin

to prior findings demonstrating exercise-induced diminution of
MAT in non-calorically restricted states.(16,18) In terms of regional
analysis, metaphyseal MAT/BV was particularly responsive to
exercise (− 52% in RD-E versus RD and −121% in CR-E versus
CR, p = 0.01 for an exercise effect) (Fig. 3C). Adipocyte size vis his-
tology correlated with the MRI data: −48% in RD-E versus RD and
−20% in CR-E versus CR, p = 0.006 for an exercise effect (for cor-
relation R2 = 0.6233, p < 0.0001) (Fig. 5A–C).

Exercise increases markers of resorption in caloric
restriction

Next, we queried whether bone resorption might be involved in
the increased bone degradation noted in CR exercisers. Osteo-
clast number was quantified via static histomorphometry
(n = 4–6 mice /group) normalized to the bone surface (N.Oc/
BS). The N.Oc/BS analysis shows no statistically significant differ-
ence between the groups (Fig. 4B). The analysis of the variance
does show that more of the variance is accounted for by exercise
status than by diet. It is possible that the high variability of N.Oc/
BS in sedentary groups did not permit statistically significant

Fig. 2. Bone quantity was degraded by exercise in caloric restriction. Tibial bonemicroarchitecture via μCT in B6mice after 6 weeks of 30% caloric restric-
tion (CR) or regular diet (RD) +/−running exercise (E) (n = 7/group). (A) Trabecular parameters. (B) Cortical parameters. Plots represent means � SD. Sig-
nificance by 2-way ANOVA. For multiple comparisons, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001****p ≤ 0.0001.
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differences to emerge in this analysis and that a larger number of
animals would be required to definitively quantify a difference in
N.Oc/BS.

In our qPCR analysis, TRAP mRNA, which was down 73% in
CR versus RD, rose 150% in CR-E versus CR (TRAP mRNA,
p = 0.04 for exercise effect). Sclerostin or Sost mRNA similarly
was reduced 79% in CR versus RD and rose 115% in CR-E ver-
sus CR (p = 0.009 for exercise as main effect, Fig. 4C). Thus,
mRNA data demonstrates an increase in markers of bone
resorption in the exercise groups, although staining for osteo-
clasts did not reach significance. Because tibias were used for
PCR and microarchitecture and femorae for MAT by MRI and
histomorphometry, results might not be generalizable to other
long bones, and correlation of outcomes between disparate
bones requires care.

Bone fatty acid uptake underlies MAT expansion in caloric
restriction

Adipocyte area increased in CR compared with RD (Fig. 5B)
and correlated with MAT by MRI (correlation R2 = 0.6233,
p < 0.0001), demonstrating significant fat accumulation in CR-
bone. We sought to investigate potential pathways bywhichmar-
row adipocyte accumulation occurs in this setting. Lipid droplet
markers such as perilipin 1 or Plin1 was highest in the CR group
(Fig. 5C). Interestingly, caloric restriction significantly increased
CD36, a marker of fatty acid uptake (+4088%, p < 0.01 CR versus
RD), suggesting a mechanism for lipid accumulation in the bone
in CR. Exercise attenuated CD36 in CR consistent with exercise
induced suppression of MAT in this setting by MRI and histology
(Fig. 5C, −1394% CR-E versus CR). Additionally, in RD-exercisers,

Fig. 3. Exercise associated with reducedmarrow adipose tissue (MAT), even in the setting of caloric restriction. AverageMRI group images (n = 6–9/exper-
imental group) in sagittal (A), coronal (B) planes color labeled for quantity of lipid. B6 mouse femurs analyzed 6 weeks after 30% caloric restriction (CR) or
regular diet (RD) +/− running exercise (E) via MRI with advanced image processing. (C) Bone volume (BV) andmarrow adipose tissue (MAT) quantification
via MRI. Mean � SD. Significance by 2-way ANOVA. For multiple comparisons, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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fatty acid uptake marker CD36 rose while in CR-exercisers it
declined, suggesting a divergent bone metabolic profile in these
states that may dictate lipid uptake and utilization.

Discussion

Adipocytes in the bone marrow serve critical roles, regulating
homeostasis in hematopoietic niches(63,64) and storing energy
for use during exercise.(17) An increase in marrow fat is found
during conditions associated with osteoporosis—aging and
estrogen deficiency(12)—and the same has been suggested in
the unique bone fragility that accompanies caloric restric-
tion.(31,32,65) Here we quantifiedmarrow adiposity with advanced
image analysis during caloric restriction with an added stressor
of exercise. By means of 9.4 T MRI 3D images, we demonstrated
that marrow fat relative to bone volume increased during caloric
restriction, most notably in the femoral metaphysis when com-
pared with other regions of the femur. Although peripheral adi-
pose depot size decreased due to energy utilization during
caloric restriction, the size of marrow adipocytes increased. As
such, adipocyte hypertrophy and significant lipid accumulation
occurred in bone in the presence of an energy-depleted state.
Along with the increase in bone marrow adiposity, we

demonstrated suppressed bone turnover markers in sedentary
calorie-restricted mice. Importantly, when CR mice exercised,
marrow fat declined, and bone turnover markers increased. In
sum, exercise requires energy for anabolism, and exercise in
the absence of stored fat might result in sacrificing tissue to sup-
ply needed calories.

Our finding of increased bone turnover markers in exercised,
calorically restrictedmice is clinically important, as exercise is fre-
quently proposed as a form of therapy for patients with bone fra-
gility. Bone resorption in the calorically restricted state likely
depends on several factors such as sex, severity of CR, duration
of CR, and physical activity intensity. A human study of anorexic
girls revealed reduced urinary N-terminal telopeptide (NTX), a
bone resorption marker,(66) suggesting decreased bone turnover
consistent with findings in our CR mice. Hypoestrogenism is part
of anorexia in women(65) and caloric restriction in female mice(67)

though, estrogen therapy has displayed variable efficacy in
anorexia for bone density endpoints.(68–70) A limitation of our
study is the lack of estradiol measurements. Since exercise exac-
erbates hypoestrogenism,(71) hormonal status might contribute
to the deterioration of bone as well as to likely increased resorp-
tion in CR-exercisers.

Themechanisms bywhichMAT accrues in the calorie-restricted
state continue to be an area of active investigation.(3,72) Increased

Fig. 4. Exercise, in the setting of caloric restriction, attenuates markers of bone resorption. (A) TRAP (red) stain of osteoclasts in representative histologic
sections of tibias after 6 weeks of 30% CR +/− exercise. (B) Osteoclasts quantified via semi-automated histomorphometry in mouse femurs (n = 4–6/
group) with individual mice plotted. (C) Tibial mRNA via qPCR (n = 4/group). Means � SD. Significance by 2-way ANOVA between experimental groups.
For multiple comparisons, *p ≤ 0.05.
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glucocorticoids, Pref-1, and MAT-derived adiponectin(28,73,74) as
well as low IGF-1 and leptin(28,32,75–77) have been associated with
MAT in CR; however, causality has not been established for these
factors in driving MAT nor in the skeletal deterioration of
CR. Systemic sclerostin inhibition was shown to reduce marrow
adipocytes.(78) Our data show bone Sost expression decreased
during calorie restriction, potentially part of the mechanism
underlying decreased bone turnover. Interestingly, Sost increased
with exercise, whereas MAT decreased. Future investigation is
required to determine the role of Sost in MAT accumulation.

We found a significant increase in fatty acid translocate/CD36 in
bones of calorically restricted animals, suggesting an augmented
cellular uptake of fatty acids.(79) A study of CD36 knockout mice
revealed reduced bone quantity, suggesting that CD36 is important
for skeletal health.(80) CD36 possesses cellular functions related to
use of fat calories including functioning as a receptor for oxidized
low-density lipoprotein (LDL)(81) as well as regulating fatty acid
uptake in skeletal muscle and cardiomyocytes. CD36 upregulation
in muscle can occur in the setting of increased dietary fat availabil-
ity, driven by AMP-activated protein kinase (AMPK) activation.(82)

During starvation, CD36 is upregulated in muscle and understood
to be a fundamental regulator of muscle’s metabolic flexibility,
reducing the tissue’s reliance on glucose and increasing the utiliza-
tion of fatty acids for energy.(83) in vitro experiments exhibited a
preference for glucose as an energy source in cultured osteo-
blasts.(84) It is unclear whether osteocytes, marrow adipocytes, and
their progenitors rely on fatty acids or glucose in the calorie-
restricted state and exercised states. Recent human metabolomic
data obtained after 10 days of starvation points to a shift from car-
bohydrate to fatty acidmetabolism.(27) Here the increase in CD36 in

the bone of calorie-restricted mice associates with the rise in MAT
and may provide a metabolic mechanism for MAT accumulation
despite the energy-deficient state.

Exercise consumes calories from several substrates, including
carbohydrates and fat, to supply energy for muscle and skeletal
anabolism.(17,85) The MAT present in the CR state, and its appar-
ent utilization during exercise, however, did not support bone
formation. In fact, calorie-restricted exercisers began with low-
turnover markers compared with calorie-replete animals and
responded to exercise with rises in resorption markers Sost and
Trap in CR bone. As such, exercise-induced cortical porosity
and marrow area increases in CR-E, along with diminished corti-
cal thickness and cortical bone fraction, indicate bone was quan-
titatively reduced. Although cortical porosity is not a direct
measure of strength, it is distinctly associated with reduced
strength(86–88) and thus reflects probable diminution of bone
quality as well. Notably, low-magnitude mechanical stimulation
(LMMS), an exercise mimic, was similarly found to increase
resorption in human anorexia, along with reduced markers of
bone formation.(89) In accordance with our findings inmice, Swift
and colleagues demonstrated increased bone resorption in
food-restricted, exercised rats.(67) Although studies have shown
that bone loss due to anorexia in humans(33) and caloric restric-
tion in mice(34,67) is not ameliorated by exercise, ours is the first
to show further degradation of bone quantity with voluntary
exercise. The voluntary exercise intervention applied is distinct
from prior studies, which applied forced running; indeed, mice
ran despite being calorie restricted and in spite of increased
energy needs. Southmayd and colleagues showed that for
exercising humans, bone loss and resorption were higher in

Fig. 5. Caloric restriction, exercise attenuation of marrow adipocyte area, marker of fatty acid metabolism. Histomorphometric analysis performed on
3 sections per mouse (n = 5–6) with a minimum of 300 cells analyzed for each experimental group. (A) Marrow adipocyte area histogram. (B) Marrow adi-
pocyte area. (C) qPCR on mRNA from tibias (n = 4). (D) Linear correlation plot of adipocyte area versus MAT/BV via MRI analysis; both performed in distal
femoral metaphysis. Plots demonstrate means � SD. Significance by 2-way ANOVA between experimental groups. For multiple comparisons, *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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the energy-deficient state.(90) Our outcome that exercise can be
harmful to the skeleton during calorie restriction is additionally
in line with Pontzer’s constrained energy expendituremodel that
suggests increasing quantities of physical activity are not neces-
sarily additive with regard to improved health and may be con-
strained based on nutrient availability.(46,47)

In conclusion, during the calorie-replete state, exercise
induces skeletal anabolism and alters skeletal architecture
through effects on a multiplicity of cells.(91) In the calorie-replete
state, data support that energy stored in marrow adipocytes are
utilized for energy during exercise.(2) In striking contrast, we
demonstrate here that exercise appears to be harmful to bone
during calorie restriction, in congruence with clinical data.(90)

Thus, despite MAT expansion in caloric restriction, this fat depot
might not be harnessed to support energy needed to sustain
bone anabolism as well as prevent bone resorption in the
energy-restricted sedentary and exercised states.
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