812 research outputs found

    Dim Isolated Neutron Stars, Cooling and Energy Dissipation

    Get PDF
    The cooling and reheating histories of dim isolated neutron stars(DINs) are discussed. Energy dissipation due to dipole spindown with ordinary and magnetar fields, and due to torques from a fallback disk are considered as alternative sources of reheating which would set the temperature of the neutron star after the initial cooling era. Cooling or thermal ages are related to the numbers and formation rates of the DINs and therefore to their relations with other isolated neutron star populations. Interaction with a fallback disk, higher multipole fields and activity of the neutron star are briefly discussed.Comment: To appear in Astrophysics and Space Science, in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 2006; eds. D. Page, R. Turolla and S. Zane. Revised version: with minor change and typos correcte

    Persistent and Transient Blank Field Sources

    Get PDF
    Blank field sources (BFS) are good candidates for hosting dim isolated neutron stars (DINS). The results of a search of BFS in the ROSAT HRI images are revised. We then focus on transient BFS, arguing that they belong to a rather large population. The perspectives of future research on DINS are then discussed.Comment: 3 pages, 0 figures. Paper presented at the Conference "Isolated Neutron Stars: from the interior to the surface", London, April 2006. Astrophysics and Space Science, in pres

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    The beta function of N=1 SYM in Differential Renormalization

    Get PDF
    Using differential renormalization, we calculate the complete two-point function of the background gauge superfield in pure N=1 Supersymmetric Yang-Mills theory to two loops. Ultraviolet and (off-shell) infrared divergences are renormalized in position and momentum space respectively. This allows us to reobtain the beta function from the dependence on the ultraviolet renormalization scale in an infrared-safe way. The two-loop coefficient of the beta function is generated by the one-loop ultraviolet renormalization of the quantum gauge field via nonlocal terms which are infrared divergent on shell. We also discuss the connection of the beta function to the flow of the Wilsonian coupling.Comment: 20 pages, 2 figures. Reference added, minor correction

    Hysteretic damper based on Bouc-Wen model

    Get PDF
    In the presented work we consider the dynamics of the mechanical system under internal force with a damper taking into account the hysteretic nature of the damper. As a mathematical model of this hysteretic damper we consider the Bouc-Wen model. The obtained numerical results in the form of the force transfer function demonstrates the efficiency of the hysteretic damper in comparison with the nonlinear viscous damper.This work is supported by the RFBR grant No 16-08-00312, 17-01-00251

    Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients

    Get PDF
    This is the post-print version of the final paper published in Computers & Mathematics with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional diffusion problems with variable coefficients. The methods use either a specially constructed parametrix (Levi function) or the standard fundamental solution for the Laplace equation to reduce the boundary-value problem (BVP) to a boundary–domain integral equation (BDIE) or boundary–domain integro-differential equation (BDIDE). The radial integration method (RIM) is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Furthermore, a subdomain decomposition technique (SDBDIE) is proposed, which leads to a sparse system of linear equations, thus avoiding the need to calculate a large number of domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed approaches

    Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient

    Get PDF
    "Rotating RAdio Transients" (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    Variational self-consistent theory for trapped Bose gases at finite temperature

    Full text link
    We apply the time-dependent variational principle of Balian-V\'en\'eroni to a system of self-interacting trapped bosons at finite temperature. The method leads to a set of coupled non-linear time dependent equations for the condensate density, the thermal cloud and the anomalous density. We solve numerically these equations in the static case for a harmonic trap. We analyze the various densities as functions of the radial distance and the temperature. We find an overall good qualitative agreement with recent experiments as well as with the results of many theoretical groups. We also discuss the behavior of the anomalous density at low temperatures owing to its importance to account for many-body effects.Comment: 8 pages, 8 figure
    corecore