13 research outputs found

    Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    Get PDF
    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D-alpha (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally

    New method in medical tomography based on vibrating wire:bench-test experiment on laser beam

    No full text
    A new method for fast transverse beam profiling, where a vibrating wire is served as a resonant target, has been developed. The speed of scan up to a few hundred mm/s provides opportunity to make a set of beam profiles at different directions of the scan within a reasonable measurement time. This profile set allows us to reconstruct 2D beam profile by filtered back-projection algorithm. The new method may be applied for proton, X-ray, gamma, and neutron beams, and can also be of interest in tomography including medical applications. The method has been tested experimentally by means of laser beams

    Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    No full text
    We present the first measurement of a local fast-ion 2D velocity distribution function f(v‖, v⊄). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v‖, v⊄) by tomographic inversion. Salient features of our measurement of f(v‖, v⊄) agree reasonably well with the simulation: the measured as well as the simulated f(v‖, v⊄) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f(v‖, v⊄) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v‖, v⊄) by tomographic inversion
    corecore