68 research outputs found

    HIV/AIDS, declining family resources and the community safety net

    Get PDF
    Families play central roles in the HIV/AIDS pandemic, caring for both orphaned children and the ill. This extra caregiving depletes two family resources essential for supporting children: time and money. We use recent data from published studies in sub-Saharan Africa to illustrate deficits and document community responses. In Botswana, parents caring for the chronically ill had less time for their preschool children (74 versus 96 hours per month) and were almost twice as likely to leave children home alone (53% versus 27%); these children experienced greater health and academic problems. Caregiving often prevented adults from working full time or earning their previous level of income; 47% of orphan caregivers and 64% of HIV/AIDS caregivers reported financial difficulties due to caregiving. Communities can play an important role in helping families provide adequate childcare and financial support. Unfortunately, while communities commonly offer informal assistance, the value of such support is not adequate to match the magnitude of need: 75% of children's families in Malawi received assistance from their social network, but averaging only US$81 annually. We suggest communities can strengthen the capacity of families by implementing affordable quality childcare for 0–6 year olds, after-school programming for older children and youth, supportive care for ill children and parents, microlending to enhance earnings, training to increase access to quality jobs, decent working conditions, social insurance for the informal sector, and income and food transfers when families are unable to make ends meet

    Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate

    Get PDF
    Introduction Repair of large bone defects remains a significant clinical challenge. Bone marrow stromal cells (BMSCs), a subset of which is known as bone marrow-derived mesenchymal stem cells, show therapeutic potential for bone regeneration. However, their isolation, expansion and implantation will need to be conducted under good manufacturing practices (GMP) at separate locations. An investigation which mimics this clinical scenario where large bone defects shall be regenerated is required before clinical trials can be initiated. Methods Seven batches of 100 million human ex-vivo expanded BMSCs from five donors were transported fresh in syringes from a GMP facility in Germany to France. BMSCs were mixed with biphasic calcium phosphate (BCP) biomaterial prior to subcutaneous implantation in nude mice. The capacity of BMSCs in unison with BCP to regenerate critical sized cranial bone defects was also evaluated. BMSCs expressing luciferase were used to assess the viability and bio-distribution of implanted cells. In situ hybridization, using the human-specific repetitive Alu sequence, was performed for the identification of human cells in explants. Results Eight weeks after implantation of BMSCs, mineralized bone containing mature bone marrow territories was formed in ectopic sites and in calvaria defects. Significant loss of cell viability was observed by bioluminescence imaging and only 1.5 percent of the initial number of transplanted cells remained after 37 days. After eight weeks, while explants were comprised primarily of host cells, there were also human cells attached along the periphery of BCP and embedded in osteocyte lacunae dispersed throughout the newly formed bone matrix. Conclusions This study demonstrates the safety and efficacy of BMSC/BCP combinations and provides crucial information for the implementation of BMSC therapy for bone regeneration

    The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties

    Get PDF
    Background Osteosarcoma (OS) is the most common type of primary bone cancer affecting children and adolescents. OS has a high propensity to spread meaning the disease is often incurable and fatal. There have been no improvements in survival rates for decades. This highlights an urgent need for the development of novel therapeutic strategies. Here, we report in vitro and in vivo data that demonstrates the role of purinergic signalling, specifically, the B isoform of the purinergic receptor P2RX7 (P2RX7B), in OS progression and metastasis. Methods TE85 and MNNG-HOS OS cells were transfected with P2RX7B. These cell lines were then characterised and assessed for proliferation, cell adhesion, migration and invasion in vitro. We used these cells to perform both paratibial and tail vein injected mouse studies where the primary tumour, bone and lungs were analysed. We used RNA-seq to identify responsive pathways relating to P2RX7B. Results Our data shows that P2RX7B expression confers a survival advantage in TE85 + P2RX7B and MNNG-HOS + P2RX7B human OS cell lines in vitro that is minimised following treatment with A740003, a specific P2RX7 antagonist. P2RX7B expression reduced cell adhesion and P2RX7B activation promoted invasion and migration in vitro, demonstrating a metastatic phenotype. Using an in vivo OS xenograft model, MNNG-HOS + P2RX7B tumours exhibited cancer-associated ectopic bone formation that was abrogated with A740003 treatment. A pro-metastatic phenotype was further demonstrated in vivo as expression of P2RX7B in primary tumour cells increased the propensity of tumour cells to metastasise to the lungs. RNA-seq identified a novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4, downregulated in response to A740003 treatment. Conclusion Our data illustrates a role for P2RX7B in OS tumour growth, progression and metastasis. We show that P2RX7B is a future therapeutic target in human OS

    A Scalable Tag-Based Recommender System for New Users of the Social Web

    Full text link
    Folksonomies have become a powerful tool to describe, discover, search, and navigate online resources (e.g., pictures, videos, blogs) on the Social Web. Unlike taxonomies and ontologies, which overimpose a hierarchical categorisation of content, folksonomies empower end users, by enabling them to freely create and choose the categories (in this case, tags) that best describe a piece of information. However, the freedom afforded to users comes at a cost: as tags are informally defined and ungoverned, the retrieval of information becomes more challenging. In this paper, we propose Clustered Social Ranking (CSR), a novel search and recommendation technique specifically developed to support new users of Web 2.0 websites finding content of interest. The observation underpinning CSR is that the vast majority of content on Web 2.0 websites is created by a small proportion of users (leaders), while the others (followers) mainly browse such content. CSR first identifies who the leaders are; it then clusters them into communities with shared interests, based on their tagging activity. Users' queries (be them searches or recommendations) are then directed to the community of leaders who can best answer them. Our evaluation, conducted on the CiteULike dataset, demonstrates that CSR achieves an accuracy that is comparable to the best state-of-the-art techniques, but at a much smaller computational cost, thus affording it better scalability in these fast growing settings. © 2011 Springer-Verlag Berlin Heidelberg

    Global electricity network - Feasibility study

    Full text link
    With the strong development of renewable energy sources worldwide, the concept of a global electricity network has been imagined in order to take advantage of the diversity from different time zones, seasons, load patterns and the intermittency of the generation, thus supporting a balanced coordination of power supply of all interconnected countries. The TB presents the results of the feasibility study performed by WG C1.35. It addresses the challenges, benefits and issues of uneven distribution of energy resources across the world. The time horizon selected is 2050. The study finds significant potential benefits of a global interconnection, identifies the most promising links, and includes sensitivity analyses to different factors, such as wind energy capacity factors or technology costs

    Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA

    Get PDF
    Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy

    Physiology of the ductus arteriosus in the fetus and newborn

    Get PDF
    Peer Reviewe
    corecore