225 research outputs found

    Microlensing of circumstellar envelopes: II. emission lines from radial and azimuthal flow during fold caustic crossings

    Get PDF
    This paper examines the line profile evolution due to bulk motion in circumstellar envelopes during microlensing fold caustic crossing events. These events have recently been shown to be a sensitive probe of stellar surface brightness profiles, thus providing a means - through both photometric and spectroscopic observations - to constrain and test stellar atmosphere models. Here it is demonstrated, through the examination of simplified line profiles, that spectroscopic studies of fold caustic crossings could also prove to be a powerful diagnostic of bulk motion in circumstellar envelopes

    The Polarisation Signatures of Microlensing

    Get PDF
    It has already been shown that microlensing can give rise to a non-zero variable polarisation signal. Here we use realistic simulations to demonstrate the additional information that can be gained from polarimetric observations of lensing events.Comment: 4 pages, LaTeX, 2 figures from 6 postscript files. Uses elsart.sty, graphicx.sty and harvard.sty. To appear in New Astronomy Reviews - proceedings of the Oxford Workshop `Gravitational Lensing: Nature's Own Weighing Scales

    Distance Estimation in Cosmology

    Full text link
    In this paper we outline the framework of mathematical statistics with which one may study the properties of galaxy distance estimators. We describe, within this framework, how one may formulate the problem of distance estimation as a Bayesian inference problem, and highlight the crucial question of how one incorporates prior information in this approach. We contrast the Bayesian approach with the classical `frequentist' treatment of parameter estimation, and illustrate -- with the simple example of estimating the distance to a single galaxy in a redshift survey -- how one can obtain a significantly different result in the two cases. We also examine some examples of a Bayesian treatment of distance estimation -- involving the definition of Malmquist corrections -- which have been applied in recent literature, and discuss the validity of the assumptions on which such treatments have been based.Comment: Plain Latex version 3.1, 18 pages + 2 figures, `Vistas in Astronomy' in pres

    Evidence of sub‐MeV EMIC‐driven trapped electron flux dropouts from GPS observations

    Get PDF
    For many years, it was believed that resonant interactions between electromagnetic ion cyclotron (EMIC) waves and radiation belt electrons were restricted to electron energies > 1 − 2 MeV. In recent years, however, a growing body of experimental evidence has shown that EMIC waves can cause the scattering loss of electrons down to sub‐MeV energies. Using measurements of trapped electron flux from the GPS satellite constellation, we investigate the ability of EMIC waves to cause significant depletions of radiation belt electron populations between 4 ≤ L* ≤ 5. For the first time, we present statistical evidence demonstrating global decreases in sub‐MeV trapped electron flux in response to EMIC wave activity. Although we find that electron losses extend down to sub‐MeV energies, we also show strong statistical support for the ability of EMIC waves to preferentially cause substantial depletions of ultra‐relativistic electrons in the radiation belts

    Impact of EMIC‐wave driven electron precipitation on the radiation belts and the atmosphere

    Get PDF
    In recent years there has been a growing body of direct experimental evidence demonstrating electromagnetic ion cyclotron (EMIC) waves driving energetic electron precipitation (EEP) at unexpectedly low, sub‐MeV energies — as low as only a few hundred keV. EMIC wave driven scattering at these energies has important ramifications for our understanding of not only radiation belt electron dynamics, but also the importance of EMIC‐driven EEP to the chemical balance of the Earth’s atmosphere. In this study, we use three experimentally derived EMIC‐driven EEP flux spectra to investigate the impact of this precipitation on trapped radiation belt fluxes. In doing so, we resolve an apparent contradiction with earlier results derived from trapped electron flux populations that suggested EMIC waves only caused significant scattering at ultra‐relativistic energies. We show that strong sub‐MeV EEP measurements are not necessarily mutually exclusive with a strongly relativistic‐only trapped flux response, as the sub‐MEV peak precipitation is comparatively much smaller than the trapped population at those energies. Using a further six EEP spectra, we also demonstrate that EMIC‐driven EEP can generate significant ionisation of the Earth’s atmosphere above 40km, leading to the loss of mesospheric ozone. We find poor correlation between EMIC‐driven EEP fluxes and geomagnetic activity proxies, such that EMIC‐driven EEP is likely to be poorly specified in the forcing factors of modern coupled‐climate models

    A multi-instrument approach to determining the source‐region extent of EEP-driving EMIC Waves

    Get PDF
    Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth's atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fortuitous simultaneous observation of EMIC wave activity by the RBSP‐B and Arase satellites in conjunction with ground‐based observations of EEP by a subionospheric VLF network. We describe a simple method for determining the longitudinal extent of the EMIC source region based on these observations, calculating a width of 0.75 hr MLT and a drift rate of 0.67 MLT/hr. We describe how this may be applied to other similar EMIC wave events

    The VLT-FLAMES survey of massive stars: observations in the Galactic clusters NGC3293, NGC4755 and NGC6611

    Get PDF
    We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi-Element Spectrograph (FLAMES) instrument at the Very Large Telescope (VLT). Here we present observations of 269 Galactic stars with the FLAMES-Giraffe Spectrograph (R ~ 25,000), in fields centered on the open clusters NGC 3293, NGC 4755 and NGC 6611. These data are supplemented by a further 50 targets observed with the Fibre-Fed Extended Range Optical Spectrograph (FEROS, R = 48,000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC 3293 and NGC 4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.Comment: 26 pages, 9 figures (reduced size). Accepted for publication in A&A. A copy with full res. figures is available from http://www.ing.iac.es/~cje/flames_mw.ps.gz. Minor changes following correction of proof

    On the use of Principal Component Analysis in analysing Cepheid light curves

    Get PDF
    We show how Principal Component Analysis can be used to analyse the structure of Cepheid light curves. This method is more efficient than Fourier analysis at bringing out changes in light curve shape as a function of period. Using this technique, we study the shape of fundamental and first overtone mode Cepheid light curves in the Galaxy, LMC and SMC over a wide period range. For fundamentals, we find evidence for structural changes at logP1.55,2.1\log P \approx 1.55, 2.1. It is suggested that the feature at logP2.1\log P \approx 2.1 is associated with a resonance in the Cepheid normal mode spectrum. For overtones, we recover the Z shape in the R21R_{21} period plane and reproduce the metallicity dependence of this Z shape.Comment: Accepted for publication in MNRA

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore