420 research outputs found

    Temperature in complex networks

    Get PDF
    Various statistical-mechanics approaches to complex networks have been proposed to describe expected topological properties in terms of ensemble averages. Here we extend this formalism by introducing the fundamental concept of graph temperature, controlling the degree of topological optimization of a network. We recover the temperature-dependent version of various important models as particular cases of our approach, and show examples where, remarkably, the onset of a percolation transition, a scale-free degree distribution, correlations and clustering can be understood as natural properties of an optimized (low-temperature) topology. We then apply our formalism to real weighted networks and we compute their temperature, finding that various techniques used to extract information from complex networks are again particular cases of our approach

    Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

    Full text link
    Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O(logL)O(\sqrt{\log |L|})-approximation algorithm for MLCM-P

    Identification of nitric oxide synthase in human and bovine oviduct

    Get PDF
    Nitric oxide synthase (NOS) is responsible for the biological production of nitric oxide (NO) in several organs. NOS activity has also been localized in the reproductive tract, although direct evidence for its presence in the human or bovine oviduct is still lacking. In the present study, four different techniques were used to identify the presence of NOS activity in human (n = 11) and bovine (n = 9) oviduct: (i) conversion of [3H]-L-arginine to [3H]-L-citrulline; (ii) production of nitrite/nitrate (NO2/NO3; stable NO metabolites); (iii) identification of NADPH-diaphorase activity; and (iv) immunostaining with antiserum to endothelial NOS. Cytosolic extracts from human ampullary segments of the Fallopian tube, obtained from post-partum patients (n = 4), converted [3H]-L-arginine to [3H]-L-citrulline (21.0 ± 8.8 fmol/mg protein/min). This conversion rate was significantly (P <0.05) reduced in the presence of either EDTA or N-monomethyl-L-arginine monoacetate (L-NMMA), an inhibitor of NOS activity. When bovine (n = 3) ampullary segments were incubated for 36 h in Hanks' balanced salt solution, the concentration of NO2/NO3 in the medium was increased (P <0.05) if segments were pretreated with lipopolysaccharide (LPS; an inducer of inducible NOS), but not after treatment with LPS + L-NMMA. Additionally, epithelial cells cultured from ampullary segments showed positive staining both for NADPH-diaphorase activity and with antiserum to endothelial NOS. The results of the present study provide direct evidence for the presence of both the Ca2+ -dependent constitutive form of NOS, as well as the inducible form of NOS activity in human and bovine oviduct. Since the oviduct plays a key role in the reproductive process, it is possible that the two forms of NOS may be involved in the physiological regulation of oviduct functio

    The Impact of new Execution Venues on European Equity Markets’ Liquidity – The Case of Chi-X

    Get PDF
    With the Markets in Financial Instruments Directive in effect since November 2007, new trading venues have emerged in European equities trading, among them Chi-X. This paper analyzes the impact of this new market entrant on the home market as well as on consolidated liquidity of French blue chip equities, newly tradable on Chi-X. Our findings suggest that owing to this new competition the home market’s liquidity has enhanced. This is apparently due to the battle for order flow which results in narrower spreads and increased market depth. These results imply that overall liquidity in a virtually consolidated order book is in the French case higher than without the new competitor

    Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order

    Full text link
    The Nernst effect has recently proven a sensitive probe for detecting unusual normal state properties of unconventional superconductors. In particular, it may sensitively detect Fermi surface reconstructions which are connected to a charge or spin density wave (SDW) ordered state, and even fluctuating forms of such a state. Here we summarize recent results for the Nernst effect of the iron pnictide superconductor LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, whose ground state evolves upon doping from an itinerant SDW to a superconducting state, and the cuprate superconductor La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 which exhibits static stripe order as a ground state competing with the superconductivity. In LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, the SDW order leads to a huge Nernst response, which allows to detect even fluctuating SDW precursors at superconducting doping levels where long range SDW order is suppressed. This is in contrast to the impact of stripe order on the normal state Nernst effect in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4. Here, though signatures of the stripe order are detectable in the temperature dependence of the Nernst coefficient, its overall temperature dependence is very similar to that of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, where stripe order is absent. The anomalies which are induced by the stripe order are very subtle and the enhancement of the Nernst response due to static stripe order in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 as compared to that of the pseudogap phase in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO Science for Peace and Security Series B: Physics and Biophysics, (Springer Science+Business Media B.V. 2012

    Electron transport in nanotube--molecular wire hybrids

    Full text link
    We study contact effects on electron transport across a molecular wire sandwiched between two semi-infinite (carbon) nanotube leads as a model for nanoelectrodes. Employing the Landauer scattering matrix approach we find that the conductance is very sensitive to parameters such as the coupling strength and geometry of the contact. The conductance exhibits markedly different behavior in the two limiting scenarios of single contact and multiple contacts between the molecular wire and the nanotube interfacial atoms. In contrast to a single contact the multiple-contact configuration acts as a filter selecting single transport channels. It exhibits a scaling law for the conductance as a function of coupling strength and tube diameter. We also observe an unusual narrow-to-broad-to-narrow behavior of conductance resonances upon decreasing the coupling.Comment: 4 pages, figures include

    Polarons with a twist

    Full text link
    We consider a polaron model where molecular \emph{rotations} are important. Here, the usual hopping between neighboring sites is affected directly by the electron-phonon interaction via a {\em twist-dependent} hopping amplitude. This model may be of relevance for electronic transport in complex molecules and polymers with torsional degrees of freedom, such as DNA, as well as in molecular electronics experiments where molecular twist motion is significant. We use a tight-binding representation and find that very different polaronic properties are already exhibited by a two-site model -- these are due to the nonlinearity of the restoring force of the twist excitations, and of the electron-phonon interaction in the model. In the adiabatic regime, where electrons move in a {\em low}-frequency field of twisting-phonons, the effective splitting of the energy levels increases with coupling strength. The bandwidth in a long chain shows a power-law suppression with coupling, unlike the typical exponential dependence due to linear phonons.Comment: revtex4 source and one eps figur

    Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

    Full text link
    Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Few interesting phenomena are discussed in detail. Structural asymmetry of two-site molecule results in rectification effect, which can be neutralized by asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC) DNA molecule reveal the coupling- and temperature-independent saturation effect of the current at high voltages, where for short chains we establish the inverse square distance dependence. Besides, we document the shift of the conductance peak in the direction to higher voltages due to the temperature decrease.Comment: 12 pages, 6 figure
    corecore