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Temperature in complex networks
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Various statistical-mechanics approaches to complex networks have been proposed to describe
expected topological properties in terms of ensemble averages. Here we extend this formalism by
introducing the fundamental concept of graph temperature, controlling the degree of topological
optimization of a network. We recover the temperature-dependent version of various important
models as particular cases of our approach, and show examples where, remarkably, the onset of a
percolation transition, a scale-free degree distribution, correlations and clustering can be understood
as natural properties of an optimized (low-temperature) topology. We then apply our formalism to
real weighted networks and we compute their temperature, finding that various techniques used to
extract information from complex networks are again particular cases of our approach.

PACS numbers: 89.75.Hc, 89.75.Fb, 05.70.-a

Complex networks have recently attracted much inter-
est from the community of physicists, due to the possibil-
ity of applying various techniques generally inspired by
statistical mechanics in order to highlight universal prop-
erties [1, 2]. Among the several approaches that have
been explored, an interesting one (originally proposed by
sociologists and termed exponential random graphs [3])
has been recently explored within an explicit statistical-
mechanics framework [4, 5, 6, 7, 8, 9]. This powerful
formalism allows one to treat in a unified fashion a large
class of models, including random graphs [1, 2], the con-
figuration model [10], hidden-variable models [7, 8] and
generalizations of them [6, 9]. If we restrict ourselves to
unweighted networks with a fixed number of vertices N
and with no self-loops or multiple edges, each link is re-
garded as a “particle” that can be placed between any
two vertices, subject to the constraint that the “occu-
pation number” of each pair of vertices i, j can only be
aij = 0, 1 as in the familiar Fermi statistics. Clearly, aij

coincides with the entries of the N ×N adjacency matrix
A characterizing the topology completely. Each allowed
adjacency matrix A corresponds to a possible configura-
tion, and the set of possible configurations (each with its
statistical weight PA) defines the statistical ensemble of
graphs.

The above framework allows one to develop the statis-
tical mechanics of networks by exploiting a range of tools
which are well known in physics [6]. However, this ther-
modynamical analogy has not been fully explored yet.
In particular, the concept of temperature, which is of key
importance in the study of statistical ensembles, has re-
ceived little or no attention until now in the literature
on complex networks. Our aim in the present paper is
to fully develop the thermodynamical formalism in order
to include the temperature of a graph explicitly. As we
report below for several particular cases including the-
oretical models and empirical data, we find intriguing

results showing that the temperature allows for an addi-
tional understanding of complex networks. In particular
we find that many well-known topological properties such
as the presence of a giant component, a scale-free degree
distribution, correlations and clustering can be easily un-
derstood in terms of the low-temperature behaviour of
real networks. Our results can also be exploited to com-
pute the temperature of real networks directly.

The reason for introducing the temperature of a net-
work is because in our view the statistical formalism is
incomplete without it. In all the approaches to expo-
nential random graphs, the probability PA depends on
the energy EA of the graph A, representing the cost of
realising A. Now, this concept of cost is unclear with-
out the assessment of its relative role with respect to
the available resources that can be exploited to form the
network. The relative importance of cost and available
resources is usually controlled in statistical physics by the
temperature. In the zero-temperature regime the system
is forced to severe optimization, so that only the least
costly configuration can be formed and the units of the
system occupy the states with lowest energy (this is the
optimized case). In the opposite, infinite-temperature ex-
treme the system does not distinguish between cheap and
expensive states, so that all configurations occur with the
same probability. The formalism that we develop here is
particularly suitable to model networks subject to such
economic/engineering constraints. We shall complement
the standard results obtained in the literature for the
generic finite-temperature case (which is recovered when
T = 1) with the interesting ones corresponding to zero
and infinite temperature, which are not accessible to cur-
rent finite-temperature models. A range of interesting re-
sults can be obtained by even the simplest models when
T is allowed to vary, in particular when T = 0. Our
approach works equally well for directed as well as undi-
rected graphs, but for the sake of simplicity we write all
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the expressions for the undirected case only. The gener-
alization to directed graphs is straightforward.

The most general statistical ensemble for an equilib-
rium undirected network is a grandcanonical one [9] with
2N(N−1)/2 graphs having a fixed number of vertices N
and a varying number of links LA =

∑

ij aij , controlled
by the chemical potential µ. If the temperature is explic-
itly introduced, the probability of graph A is

PA =
1

Z
exp

[

µLA − EA

T

]

(1)

where Z ≡
∑

A exp(µLA − EA)/T is the grand partition

function of the ensemble. Note that when T → ∞ we
have PA = 2−N(N−1)/2 for all graphs, while when T → 0
we have PA = 1 for the graph with the maximum value
of µLA − EA (or PA = M−1 if there are M degenerate
such graphs), and PA = 0 for all other graphs. The
energy EA can be in general an arbitrarily complicated
function of the adjacency matrix A, but throughout the
present paper we consider the instructive case, explored
in most models, where it can be written as a sum over
the individual link energies ǫij [6, 9]: EA ≡

∑

ij aijǫij .
This allows us to write

Z =
∑

{A}

∏

ij

e(µ−ǫij)aij/T =
∏

ij

[

1 + e(µ−ǫij)/T
]

(2)

and PA =
∏

ij p
aij

ij (1 − pij)
1−aij , where

pij(T ) =
1

e(ǫij−µ)/T + 1
(3)

is the probability that a link between i and j exists, which
has the usual form of Fermi statistics (alternative deriva-
tions of the above form for pij are given in refs.[6, 9] for
T = 1). Therefore the additivity of EA implies that each
link is drawn with probability pij independently of each
other. If the form of ǫij is further simplified, many im-
portant network models are obtained as particular cases
of eq.(3), including hidden-variable models, the config-
uration model and random graphs [6]. We shall intro-
duce the temperature-dependent version of these models
in what follows. We shall also exploit eq.(3) to study
real networks and compute their temperature empirically.
Therefore eq.(3) gives rise to a rich phenomenology and
will be of central importance throughout the paper. Be-
fore considering its particular cases, let us first note some
of its general properties. Note that, independently of T ,
pij > 1/2 when ǫij < µ and pij < 1/2 when ǫij > µ. It is
interesting to consider the infinite- and zero-temperature
limits. When T → +∞ we have from eq.(3) that

pij(+∞) =
1

2
∀i, j (4)

irrespective of the values of ǫij and hence of the differ-
ences in the cost of links. As a consequence, the network
is a random graph with p = 1/2 and is therefore trivial.

Note that in this case any two configurations A and B
become equiprobable (PA = PB). When T = 0 we have

pij(0) = Θ(µ − ǫij) (5)

so that only those pairs of vertices with ǫij < µ are con-
nected. This is the well-known degenerate behaviour of
Fermions at zero temperature, and µ is also termed the
Fermi energy ǫF = µ. This clarifies the role of µ as the
available energy per link when T → 0: at absolute zero
only the topology with the minimum value of EA − µLA

can be realized, and this topology is obtained by draw-
ing all and only the links with ǫij < µ. A final general
comment is that eq.(3) reduces to the “classical” limit

pij(T ) ≈ e(µ−ǫij)/T when e(ǫij−µ)/T ≫ 1 (6)

We now consider various specific cases. The simplest
scenario is when all link energies are equal: ǫij = ǫ. This
yields a temperature-dependent random graph since all
probabilities pij are equal to p(T ) = [e(ǫ−µ)/T + 1]−1.
While the properties of the random graph are well-
known, in our framework some intriguing results emerge
as T → 0. First of all note that p(0) = Θ(µ − ǫ) and
the graph is either fully connected (µ > ǫ) or empty
(µ < ǫ). This provides us with a temperature-based def-
inition of sparseness of a random graph: we can define a
random graph as sparse (dense) if ǫ > µ (ǫ < µ) since
when T = 0 the graph becomes empty (fully connected).
Then, it is clear that the critical probability pc ∼ 1/N
marking the percolation transition with the onset of a gi-
ant connected component can only be displayed by sparse
graphs, and if we fix ǫ and µ with ǫ < µ we can regard
the phase transition as temperature-dependent. In par-
ticular, there is a critical percolation temperature Tc such
that p(Tc) = pc ∼ 1/N . Inverting p(T ) we find

Tc =
ǫ − µ

lnN
→ 0 N → ∞ (7)

Therefore when N → ∞ we have the remarkable result
that the critical percolation temperature tends to zero,

meaning that the zero-temperature topology naturally sets
at the critical point p = pc and that at finite tempera-

ture the network is always above the percolation threshold.
This result is general: when the ǫij ’s are different we have
Tmin ≤ Tc ≤ Tmax where Tmin = (ǫmin − µ)/ lnN → 0
and Tmax = (ǫmax − µ)/ lnN → 0 as N → ∞. Therefore
Tc → 0 in this case too, suggesting why large real world
networks display a giant component. Interestingly, this
behaviour is similar to a scenario explored in the theory
of self-organized criticality (SOC) where the relation be-
tween a vanishing critical temperature and the onset of
the SOC behaviour has been explored [11].

Another case of interest, showing the surprising effects
of T , is when each link energy is the sum of two single-
vertex contributions: ǫij = ǫi + ǫj . This is the grand-
canonical version of the configuration model [6] since all
graphs with the same degree sequence have the same
EA and are therefore equiprobable. The novelty of our
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approach is that the vertex fugacities xi ≡ e−ǫi/T and
z ≡ eµ/T (in terms of which the model is conveniently
described [12, 13]) now depend on T . We have

pij(T ) =
1

e(ǫi+ǫj−µ)/T + 1
=

zxixj

1 + zxixj
(8)

The standard procedure to obtain scale-free degree dis-
tributions in this model is to assign each vertex i a fugac-
ity xi drawn from a power-law distribution ρ(x) ∼ x−γ

[12]. It has been shown that, since pij saturates to 1 as
xi → +∞, a cut-off appears in the degree distribution
[12] ensuring that the degrees do not exceed N . This
is for instance the case of the Internet [12] and of the
World Trade Web (WTW) [13]. To highlight the role of
T , it is interesting to rephrase these results in terms of
the energies ǫi. For convenience we introduce the ver-
tex fitness φi ≡ −ǫi and we take it to be non-negative
(this can always be achieved by a shift in the energies
ǫi → ǫi − ǫmax ≤ 0). Therefore φi ≥ 0 (or xi ≥ 1)
measures the tendency of vertex i to form connections
[7]. Similarly, we define φ0 ≡ −µ. Now, if we want
x to be distributed according to ρ(x) = (γ − 1)x−γ

(where 1 ≤ x < +∞ and γ > 1), then the fitness
φi = −ǫi = T lnxi must be distributed according to
q(φ) = e−φ(γ−1)/T (γ − 1)/T . But since φ does not de-
pend on T , q(φ) must be T -independent as well. The
only possibility is therefore (γ − 1)/T = λ where λ is a
constant independent of T . Without loss of generality we
can reabsorbe λ in a rescaling of the energy ǫ → λǫ so
that we can set λ = 1. This yields γ = 1 + T and

q(φ) = e−φ (φ ≥ 0), ρ(x) = Tx−1−T (x ≥ 1) (9)

which is an important result showing how T deter-
mines ρ(x) and consequently the topology of the net-
work. For instance, in the classical limit (6) we re-
cover the T -dependent version of a model studied in
ref.[7]: since pij ≈ zxixj , the expected degree k̄i =
∑

j pij ≈ zxi

∑

j xj is proportional to xi and is therefore

distributed as P (k̄) ∝ k̄−1−T , but there are no degree
correlations due to the factorization of pij . In the more
general case, P (k) has a power-law region with an expo-
nent that is still an increasing function of T , followed by a
cut-off due to the saturation of pij . The power-law region
narrows as T increases. This qualitative behaviour can be
characterized rigorously by computing k̄i as a function of
xi or φi, and inverting this relation to find P (k̄) from ρ(x)
or q(φ). This is not easy in general, but here we show
that in the three paradigmatic cases T = +∞, T = 1
and T = 0 it can be done successfully. For T = +∞ we
have the usual result pij = 1/2, and P (k̄) approaches a
trivial Poisson distribution with mean N/2. For T = 1,
denoting pij = p(φi, φj) we have

k̄ = N

∫ +∞

0

p(φ, φ′)q(φ′)dφ′ = N

∫ +∞

0

q(φ′)dφ′

eφ0−φ−φ′ + 1

= N
ln(eφ0−φ + 1)

eφ0−φ
= Nzx ln

1 + zx

zx
(10)

which is an increasing function of x and is therefore in-
vertible, even if in a non-algebraic way. If x(k̄) denotes
the inverse function, the expected degree distribution is
P (k̄) = ρ[x(k̄)]dx/dk̄. Note that k̄ ∝ x for small x, while
k̄ → N for large x. Thus in the linear regime x ∝ k̄ while
dx/dk̄ is constant, implying P (k̄) ∝ ρ[x(k̄)] ∝ k̄−2. This
region is followed by a cut-off for large k corresponding
to the saturated behaviour. Finally, when T = 0 the ex-
pression for ρ(x) in eq.(9) breaks down since all the xi’s
become infinite, and from eq.(5) we find

pij(0) = Θ(φi + φj − φ0) (11)

Surprisingly, this coincides with another model intro-
duced in ref.[7], which precisely assumes q(φ) = e−φ and
thus turns out to be the zero-temperature limit of our
general model. This model is intriguing since, using a
derivation similar to that in eq.(10), it is shown [7, 8] to
yield a purely scale-free degree distribution P (k̄) ∝ k̄−2

with no cut-off even if no power-laws are introduced “by
hand” in it. Moreover, the model displays anticorre-
lation between degrees: the average nearest neighbour
degree scales as k̄nn(k̄) ∝ k̄−1 and the clustering coeffi-
cient scales as c̄(k̄) ∝ k̄−2 (times logarithmic corrections)
[7, 8]. In our framework it is clear that φ0 plays the role
of a Fermi energy. We can also interpret the correla-
tions at T = 0 as the collective need to minimise the
total energy, an effect that gradually weakens as T in-
creases. Taken together, these intriguing results show
that in the above model correlated scale-free networks

with exponent −2 naturally arise as the zero-temperature
optimized topology. As T grows, the correlations become

weaker, the exponent of P (k̄) increases and a cut-off ap-
pears in it destroying its purely scale-free behaviour, un-

til for T → ∞ the network becomes uncorrelated with a
Poisson degree distribution. If one has access to the em-
pirical distribution ρ(x), one can measure T for any real
network which is well described by eq.(8). This is possi-
ble for the WTW, where xi has been identified with the
Gross Domestic Product of country i, whose distribution
has a power-law tail with exponent -2 [13]. This means
that TWTW = 1 and that eq.(10) applies. This is consis-
tent with the observed saturated behaviour of k(x) and
the cut-off displayed by P (k) for the real WTW [13].

It is possible to further explore eq.(3) by considering
different forms of q(φ) and of ǫij as a function of φi and
φj , thus recovering the whole class of hidden-variable
models [7] with generic pij = p(φi, φj). An even more
general case is when ǫij cannot be written as a func-
tion of single-vertex contributions, so that each pair of
vertices has an associated link fitness φij ≡ −ǫij drawn
from a distribution q(φ), and a probability pij = p(φij)
to exist. The range of possibilities is very broad, and
among them we consider a particular case which allows
for a direct application to real weighted networks and for
the characterization of their temperature. Very recently
[14] we explored the idea that the empirical weights wij

in a real weighted network can be mapped into a ma-
trix of probabilities pij = p(wij) defining an ensemble
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Network γ T Ref.

Metabolic flux networks 1.5 0.5 [15]

Interbank contract sizes 1.87 0.87 [16]

Erdős collaboration network 2 1 [17]

Chaos control & synchron. coauthorship 2.5 1.5 [17]

Financial cross-correlations 2.7 1.7 [18]

Financial cross-correlations 2.78 1.78 [19]

Financial cross-correlations 3.18 2.18 [19]

Mollusk research coauthorship 3.5 2.5 [17]

Unweighted graphs +∞ +∞

TABLE I: Empirical values of γ and T for weigthed networks.

of unweighted graphs, or ensemble network. In such a
way, many topological properties which are non-obvious
for weighted networks (such as the clustering coefficient)
can be re-defined as ensemble averages of the correspond-
ing unweighted quantities. In ref.[14] we explored the
simplest possible choice where pij ∝ wij . The results
presented here suggest that this choice is the “classi-
cal” limit, equivalent to eq.(6), of a more general choice
that we now consider. Turning to eq.(3), if we require
pij = 0 when wij = 0 and pij = 1 when wij = +∞,
we find that wij must be proportional to the link fugac-

ity e−ǫij/T . In other words, the weights must depend
on T , which corresponds to the property that at low T
the least expensive links are the most exploited, while at
high T all the weights are equal. Now, many real net-
works [15, 16, 17, 18, 19] display a power-law distribution
of link weights ρ(w) ∝ w−γ with 1.5 ≤ γ ≤ 3.5 (see Ta-
ble I). Therefore if we define xij ≡ wij/wmin ≥ 1 (where
wmin is the minimum nonzero weight for a given net-
work), corresponding to the rescaling ǫij → ǫij − ǫmax,
we can repeat the arguments leading to eq.(9) and set
ǫij ≡ −T lnxij ≤ 0 and φij ≡ −ǫij ≥ 0 to obtain the
same forms of ρ(x) and q(φ). This allows us to com-
pute the temperature of real networks with power-law
distributed weights as T = γ +1. The empirical values of

γ found in various weighted networks [15, 16, 17, 18, 19]
are summarized in Table I, and the corresponding values
of T (ranging from 0.5 to 2.5) are also shown. By con-
trast, unweighted networks correspond to T → ∞ where
xij = 1 ∀i, j. We have therefore found that a general
mapping from weights to probabilities in the context of
ensemble networks is given by pij = zxij/(1+zxij) where

xij ≡ wij/wmin and z ≡ eµ/T is a free parameter. We
note that the classical limit (6) of this expression reads
pij = zxij , and if we choose z = wmin/wmax we have
pij = wij/wmax, which is approximately equivalent to
the choice explored by us in ref.[14]. Turning to the full
expression for pij , when T → 0 eq.(5) implies that the
original weighted network is mapped into a deterministic
unweighted one where only the links with ǫij < µ are
drawn. This means that the links with weight such that
xij(T ) > z(T ) in the limit T → 0 are selected and the
others are discarded. Interestingly, since the ordering of
the weights is preserved at all temperatures, this corre-
sponds to the threshold procedure adopted in ref.[20] to
filter stock correlations and in ref.[21] to extract mini-
mum spanning trees from real foodwebs. These filtering
techniques discard most of the information contained in
the weights, resulting in a single (threshold-dependent)
unweighted graph. Here we find that this corresponds to
the zero-temperature limit for an ensemble network. Our
results allow us to apply these techniques to the finite
temperature case in order to preserve the heterogeneity
of the links and exploit it to obtain the whole ensemble
of possible configurations.

We have presented a novel approach to complex net-
works by introducing the concept of temperature. We
have shown many remarkable temperature-dependent ef-
fects resulting from topological optimization, and recov-
ered several seemingly distinct models and techniques as
particular cases of our unifying approach. This formal-
ism gives an improved understanding of network topology
and is open to further investigations.
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