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ASYMPTOTIC ANALYSISOF DISPERSION CHARACTERISTICSIN
TWO-DIMENSIONAL METALLIC PHOTONIC BAND GAP
STRUCTURES

Evgenyal. Smirnova and Chiping Chen
Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge, M assachusetts 02139

We present a self-consistent technique for the asymptotic analysis of dispersion curves in
two-dimensional (2D) metallic photonic band gap (PBG) structures representing square and
triangular arrays of metal rods. The technique is applicable for the structures with rod radii (a),
which are small compared to the distance between the rods (b) and to the wavelength (A). The
induced current and charge distributions on the rods are expressed self-consistently in terms of
the electromagnetic wave field. The dispersion characteristics are calculated for the TE and TM
modes. The results are in agreement with those obtained previously using the Photonic Band Gap

Structure Simulator (PBGSS) code.
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I.INTRODUCTION
Photonic band gap (PBG) structures [1] provide exciting new ways to control

electromagnetic waves in optical [2,3] and microwave devices [4-7]. In particular, they can be
successfully applied for higher order mode (wakefields) suppression in microwave linear
accelerators. The wakefields are unwanted modes, which are excited by an interaction of an
intense electron beam with the rf circuit. They can affect the propagation of other electron
beams. To obtain high-efficiency acceleration, the acceleration cavities must be selective with
respect to the operating mode, while suppressing unwanted oscillations. Use of the two-
dimensiona (2D) metalic PBG structures has been shown experimentaly to be a promising
approach to the realization of such mode selective circuits [4-7].

A PBG structure (photonic crystal) represents a lattice of macroscopic pieces (for example,
rods or spheres) of dielectric or metal. One can design photonic crystals with photonic band
gaps, preventing light of certain frequencies from propagating in certain directions. If, for some
frequency range, a photonic crystal reflects light incident at any angle, the crystal has a global
photonic band gap. Calculation of the fundamental and higher frequency globa photonic band
gaps is an important problem. To solve this problem for metalic lattices, a computer code, called
the Photonic Band Gap Structure Simulator (PBGSS), was developed recently at Massachusetts
Ingtitute of Technology [8]. However the finite difference method employed for the calculation
of the dispersion characteristics in Ref. [8] was unable to reveal the nature of the wave
interactions in PBG structures. In this paper we present an asymptotic analysis, which allows us
to study these interactions and improves our understanding of the physics.

We study TM and TE modes propagating in square and triangular lattices of metal rods (see
Fig. 1). We consider the limit when the rod radius, a, is much smaller than the wavelength
A =2/ k, and the distance between the rods, b. In this limit we can separate two regions in the

2D lattice with the qualitatively different behavior of electromagnetic waves. The near-field
region is the one that immediately surrounds the rod. In this region the field changes at the scale
of the rod radius and we can apply an approximate (quasistatic [9]) approach to calculate self-
consistently the sources (charges and currents) in the metallic rods due to the electromagnetic
waves in the lattice. The region beyond the near-field region is the far-field region, where the
field changes at the scale of the wavelength. According to Bloch’s theorem, the electromagnetic
field in the lattice can be decomposed into a set of plane waves with the wave vectors multiple of



the reciprocal lattice vectors. The currents, calculated self-consistently in the near-field region,
are shown to produce the coupling of several plane waves at the meta rods. The coupling
perturbs the plane-wave dispersion relations in the lattice and produces the dispersion
characteristics, which are different for the TM and TE waves. Thus, the form of the dispersion
curves is determined by both, the lattice symmetries, and the plane-wave coupling at the metal
rods.

The results of the quasistatic calculation of the TM and TE dispersion characteristics are
presented. We compare the results of the quasistatic calculation to those obtained previously
using the PBGSS code [8]. A good agreement is found.

The quasistatic method in 2D metallic lattices may be generalized to treat 2D the dielectric
lattices and dielectric-metallic hybrids [10]. Moreover, three-dimensional PBG structures [1]
such as dielectric or metallic lattices or dielectric-metallic hybrids may be studied with this
technique. Finaly, the self-consistent expressions for the currents in the rods alow the
calculation of modes localized around the defects in lattices, such as those studied in [4-7, 11,
12].

The article is organized as follows. In Sec. 11, we discuss the symmetries of 2D lattices and
present a general description of electromagnetic waves in periodic structures. In Sec. I11, we
formulate the basis of the quasistatic approach, calculate self-consistently the currents in the
metal rods due to the electromagnetic fields, and derive the dispersion characteristics for the TM
and TE waves. We illustrate the physics of plane-wave interactions with several examples.

Conclusions are presented in Sec. IV.

II.ELECTROMAGNETIC WAVE PROPAGATION IN PBG

STRUCTURES
We consider two lattices of long perfectly conducting rods, namely, the square lattice [Fig.

1(a)] and the triangular lattice [Fig. 1(b)], which were studied in Ref.®. The conductivity profile
in the | attices satisfies the periodic condition

olxy +T,,)=0olx.), ®

with the set of periodicity vectors T, | defined as



mbeé, +nbe, (sguarelattice),

T .= A A _ ) 2
mn (m+gjbex+§nbey (trianguler lattice). @

In Egs. (1) and (2), x;, = Xe, +Yye, isthetransverse coordinate, b is the lattice spacing, and

m and n areintegers. It is readily shown from Maxwell's equations that the wave field in the
two-dimensional PBG structures can be decomposed into two independent sets of modes:
transverse electric (TE) modes and transverse magnetic (TM) modes. In a TE (TM) mode the
electric (magnetic) field vector is perpendicular to the rod axis (i.e., z-axis). All the field
components in the TM (TE) modes can be expressed in terms of the axial component of the
electric (magnetic) field, which is further denoted by W . Since the system is homogeneous along
the z-axis, we can use the Fourier transform in both the axia coordinate z and time t and consider

Yxo.k,, @) = [[Wlk,, 2z t)e e dzdt ?3)
For simplicity we will use the notation (/(x,) instead of ¢(x,,k,,w) assuming that both
frequency «w and longitudinal wave number k, are fixed. The Helmholtz equation for the wave

function ¢(x ) follows from the Maxwell equations,

2

D2(xy) = (kf —f—zjw(xu), 4

andisvalid for [x, - T,

> a inevery unit cell of the lattice.

Let p(x,.k,,@) and J(x,,k,,w) be the charge and current densities induced by the field at
the surfaces of the conducting rods. The Helmholtz equation (4) can be generalized for the entire
space (vacuum and conducting rods), if the charges and currents are included. The generalized
Helmholtz equation is

DZD(//(XD)+K2¢/(XD)= f(XD)’ )
where k2 = w?/c? —k?, and f(x_) isafunction, related to the currents and charges
iark,p(x) -3 (x.)  (TM case)
f(x,)= 1 ¢ (6)
—4H(ED><J] (TE case).

Bloch’s theorem allows us to expand /(x ) in aFourier series,



Plxg) =< >y, e @)

with k; being an arbitrary wave vector perpendicular to therods and G, being vectors of the

by the orthogonality

n

reciprocal lattice [13]. Reciproca lattice vectors are related to T,
condition G [T, =29, .0, Thisyields
277(A P ) |t
o e,m+en (squarelattice),
mo T2 (L 1. 2 . . .
—|e,——=e, [m+—=e,n| (triangular lattice).

Physically, the Fourier series in Eq. (7) corresponds to an expansion of the electromagnetic

(8)

field into a set of orthogonal plane waves. Only the plane waves with certain wave numbers can
exist in the periodic lattice. With the aid of Eq. (7), Eqg. (5) can be rewritten as

ZI.KZ - (k ] + Gm,n )zjwm,neikJ&ﬁiGmynEJ = (XD)' (9)
Multiplying Eq. (9) by e ' o* 9 '¢ nnXc and integrating over the elementary cell area,

A, yields
k-G, f Lo =7i J flxo)em ey, (10)

el.cel

The ssmplest approximation to solve the system of equations (10) can be made using the
assumption that there is no interaction between the rods and the electromagnetic waves, i.e.,
f(x,)=0. Thisis called the "plane-wave approximation" [2,14]. The eigenfrequencies obtained

in the framework of this approximation are simply

(2], 7k vem

The dispersion curves given by Eq. (11) are the consequence of only the crystal symmetries.

. (11)

They are independent of the nature of the interactions in the periodic structure and are the same
for al photonic crystals with the same geometry. The dispersion curves in the plane-wave
approximation for both the square and triangular lattices are plotted in Ref. [14].



[11. QUASISTATIC APPROXIMATION FOR THIN CONDUCTING RODS

The plane-wave approximation discussed at the end of Sec. Il is a zeroth-order analysis. In
this section, we consider a first-order approximation for f (x), which describes the interactions

between the electromagnetic waves and conducting rods in Egs. (10). The first-order
approximation holds in the limit when the rods are small compared to the wavelength, i.e.,
ka<<1 (quasistatic limit) and to the distance between the rods, i.e.,, a/b<<1. In this limit,

approximations can be made to the wave eguation (5), and the source f(x,) can be self-
consistently related to the wave function ¢(x.,).

Assume that the center of the rod (m,n) is located at x, =T,,,. There are two regions
surrounding the rod (m,n), where the behavior of ™" (x ) is qualitatively different [15]: near-

field region and far-field region, as shown in Fig. 2. We introduce the notation r =x, - T, .. In
the near-field region where At <<1, the wave functiongs™" changes rapidly, i.e.,

DA~ 1a® >> kD (12)

In the far-field region where 4t = 1, the wave-function ™" changes slowly, i.e.,

O~ kil (13)
The near- and the far-field solutions must match at the boundary of the two regions,
(mn) =y (mn)
‘/Inear r~1/k B l//faf r1/k (14)

In the remainder of this section, we use the near- and the far-field solutions to derive

approximate self-consistent expressions for the sources f(x,,) and solve the system of Egs. (10).

We now consider the TM and TE modes separately.

A. TM case
Outside the conducting rods we have f (x,) = 0. Taking into account Eq. (12), we write Eq.
(5) in the near-field region in the el ectrostatic approximation as
D%y =0, (15)
For the TM case the boundary condition at the rod is given by

wia) =0 (16)

=a



The general solution of the Laplace Eq. (15) in 2D is given by
™) =g, +b,Inr +Z(a1r +— j[pI cos{18)+q, sin(16). (17)

Here a, b, p,, q, are arbitrary constants. It is sufficient to keep only the first two termsin Eq.

(17) to be able to satisfy the boundary conditions in Egs. (14) and (16). The solution satisfying

the boundary conditionsis

po :wﬁz“;“{l— '”(’“)] (18)

In(xa)
Using the solution in Eq. (18) we can calculate the source in the rod (m, n) creating this

field. We obtain

yi

(m,n) -2 (m,n) 2 2 (m,n)
f (r) DDwnear ln(Ka)D In( ) )wfar 5(r) (19)

~In(ka)
Here f™")(r) isthe sourcein therod (m,n). In the vicinity of therod (m,n) with the source
in asingle rod included the equation for ¢ becomes

2 2 2 m,n
D2+ K% = —W:a)w&a; )or). (20)

The far-field solutions of different rods must match: z/lg}'”) El/I(XD). For a periodic system

of conducting rods, we must sum over al the rods to calculate the total sources and obtain the

following wave equation:

2 m,n
DZD(//(XD)+K2(//(XD)= f(xu): _W:a)mzr;wgar' )J(XD _Tm,n)

o (21)
mZ‘/I(XD)d(XD ~Ton)-
Equation (10) along with f(x,,) from Eq. (21) becomes
R R Y 2 @)

AIn
The eigenvalues « of the linear system in Egs. (22) can now be found by diagonalizing the

infinite matrix



K2 -9 _a _a

A A A
a ( 2 a a

—_ k +G ) - _

M= AT A A it (23)

a a 2 a

- - k.+G -
A A ( . ’“'”) A

where a = _n) Because the coefficient a depends on the eigenfrequency « , the matrix M

In(xka
must be diagonalized iteratively for each eigenvalue.

The elgenvalues of the infinite matrix M can be calculated approximately as the eigenvalues
of a truncated matrix with a finite rank. This corresponds to approximating ¢ with a finite
number of lowest terms of the Fourier representation in Eqg. (7). The number of Fourier
harmonics in the representation needed to achieve the desired accuracy for « increases with
increasing a/b.

For small a/b the truncation of the Fourier representation in Eq. (7) gives a simple physical
picture of the interactions of a finite number of plane waves at the conducting rods of the lattice.
For a/b - 0 the interactions basically become binary, that is, each plane wave interacts
primarily with another plane wave, which has the wave vector of the same magnitude. For
example, the binary interaction of plane waves can explain the behavior of the lowest local band
gap width at the X-points of the sguare and triangular lattices. We consider the X-point

(k= %éx) of the sgquare lattice and restrict ourselves to the interaction of the two plane waves

with the lowest values of |k, +G,,,|. These waves correspond to (m,n,)=(00) and

(mZ’nZ):(_:LO) Wlth ‘kD+Gm,n

:% for both. The truncated matrix M, describing the

interaction of the two waves at the X- point, issimply

T _a _a

~ 2 2 2

M =D ab » ba . (24)
2 P2 P

The eigenvalues of M in Eq. (24) are



K2 = i(l— 2_0')

, T
K, —F.
Recall that a isafunction of « itself, so the equation for x; must be solved iteratively. To the
lowest order, a Oa, = ﬁﬁ/b) and the full width of the local band gap at the X-point is given
by
ab 2
A= |=blk,-«,)="L2= 26
[cj (w: =) 7 In(ralb) (20)

for small a/b. This logarithmic dependence agrees well with the numerical calculations using
the PBGSS code®.

Similarly, considering the interaction of two lowest plane waves at the X-point of the

triangular lattice (k , = %éy), we find that the full width of the local band gap at the X-point
of the triangular lattice is given by

ab)_a, _ 2

A(Tj N In(27a/x/§b) @)

In the same manner, we numericaly calculate the entire dispersion characteristics in the

for small a/b.

sguare and triangular lattices by including many plane-wave interactions. For a/b - 0 only a
limited number of the plane waves is needed to achieve a good approximation of ¢ . It is
reasonabl e to start the iterative process of solving the matrix M with theinitial value for x being

its plane-wave value «, in a given point of the k ,-space. As the eigenvalues of M [a(/(O )] are

found, the initial guesses for « are corrected and new a ’s are calculated. Then, the matrix M is
diagonalized again with new a’s. The iterative process has been performed using a computer.
Results of these calculations are summarized in Fig. 3(a) and Fig. 4(a). In Fig. 3(a) the results are
shown for the TM mode in a square lattice with a/b =0.05. The quasistatically calculated
eigenvalues are plotted with dots. Solid curves show the dispersion characteristics obtained from
the PBGSS calculations®. Five to twelve lowest vectors of the reciprocal lattice, depending on the

symmetry of the particular k - point, are taken into account, and the four lowest eigenmodes are

10



plotted. Similarly, in Fig. 4(a), the results are shown for the TM mode in a triangular lattice with
a/b=0.05. Asin Fig. 3(a), the eigenvalues calculated with the quasistatic approximation are
plotted with dots, whereas the solid curves show the dispersion characteristics obtained from the
PBGSS calculations®. Six to twelve of the lowest vectors of the reciprocal lattice are taken into

account, and the four lowest eigenfrequencies are plotted. The three specia pointsin Fig. 3(a), I,

X, and M, correspond to k=0, k :Eéx and k =£(éx +éy), respectively. The three
a a
special points in Fig. 4@, I, X, and J, correspond to k=0, kD=\/2_Tnéy and
a

k= %(@X + \/§éy). As seen in both Fig. 3(a) and Fig. 4(a), thereis a good agreement between

the PBGSS cal culations and the quasi static approximation.

B. TE case
Asinthe TM case, the Laplace equation isvalid for ¢ in anear-field field region around the

rod (m,n) for the TE wave, i.e.,
D% =o0. (28)
For the TE case (¢ stands for the longitudinal component of the magnetic field. The boundary

conditionfor ¢ at r =a is

oy

> =0. (29)

r=a

It is convenient to rewrite the boundary condition at Ar ~1 given by Eq. (14) in the form
rmy) = me?)

It is sufficient to keep only three termsin the general solution of Laplace’'s equation given by
Eq. (17) in order to satisfy the boundary conditionsin Egs. (29) and (30). The solution satisfying

(30)

r~1/«k r-1/k

the boundary conditionsis

2
po =ay+(r Dwﬁz'”))(hf—zj, (31)

11



where &, is a constantt and use was made of the relation

2 2
(r +aTj c0s0 =t Dﬂuwﬁg’”))(“a—z] |
r

Using the solution in EQ. (30), we can find that the source in the rod (m, n) creating thisfield

RN

2
f (m,n) (r) — Déwr(]r;wn)(r) D[r [D]Dwf‘;nrn)]ljé ;a_z = ZﬂaZDDwf(m,n) |:|]:|D5(r) (32)

ar

The equation for ¢ in the vicinity of the rod (m, n) with the sourcein asingle rod included is
D2 + k2w = 2ma0 '™ . o(r). (33)
For a periodic system of conducting rods the far-field solutions of different rods must match:
'™ =y(x,). In equation for (x,) we sum over the contributions from all the rods to

calculate the total sources. Thisyields
DZDI,ZI(XD)+K2¢/(XD) =f (XD) = 2naZZDD¢/$§;”) DDI15(XD _Tm,n)
e 34
- ZHaZZDDlﬂ(XD)DDDO-(XD _Tm,n)' .

Equation (10) with f(x ) asin Eq. (34) becomes

[~ + G s == S+ 6 )i +6). (39)
The eigenvalues « of the system can now be found by diagonalizing the infinite matrix
k? ~alk,+Gy, )k, - -—ak,+G,, )&k, -
_akm[ﬁkm"'Gol) (kD+G0;L)2 _a(kD"'Gm,n)[(kD"'Go,l)
M = | (36)
_aku[ﬁku"'Gm,n) _a(km"'Go,l)[ﬁkD"'Gm,n) (kD+Gm,n)2

2mra’®
where g =

. Note that unlike in the TM case, the coefficient a is independent of the

eigenvalues « .
The elgenvalues of the infinite matrix M can be calculated approximately as the eigenvalues
of atruncated matrix with a finite rank. Thus, for a/b — 0, we can explain the behavior of the

lowest local band gap width for the TE modes at the X-points of square and triangular lattices.

12



Consider the lowest binary interaction of plane waves at the X-point. For the square lattice, the

X-point corresponds to k :%éx. The two plane waves with the lowest ‘kD +G.|'s have

(m.n,)=(00) and (m,.n,)=(~10) and |k, +G,,

:%. The truncated matrix M, describing

the interaction of the two waves at the X- point, is

M = @ a@ - (37)
15) (5)

The eigenvalues of M are

2
KZ, = (7—3 (1za). (38)
For small a/b, the full width of the local band gap at the X-point scales as
2
A(@j =bk, —k,)= ma= 2(%) . (39)
Cc

This agrees well with the numerical calculations using the PBGSS code®. Similarly, considering
the interaction of the two lowest plane waves a the X-point of the triangular lattice

(k :Z—Hé ), we find that the full width of the local band gap at the X-point of the triangular
O \/éb y
latticeis given by
) _ 2 8(m)’
AN —|=—ma==| —|. 40
S “

We calculate numerically the entire TE dispersion characteristics in both square and
triangular lattices by including multiple plane-wave interactions at the meta rods. As illustrated
in Figs. 3(b) and 4(b) for a/b - 0, the approximation is good even for a small number of
Fourier components. In Fig. 3(b), the results of the quasistatic calculations are shown with dots
for the TE mode in a square lattice of rods with a/b =0.1. Solid curves show the dispersion
characteristics obtained from the PBGSS calculations’. Five to twelve of the lowest vectors in
the reciprocal lattice (depending on the symmetry of the particular k - point) are taken into
account, and four lowest eigenmodes are plotted. Similarly, in Fig. 4 (b) the results of the

13



guasistatic calculations are shown with dots for the TE mode in a triangular lattice of rods with
a/b=0.1. Solid curves show the dispersion characteristics obtained from the PBGSS
caculations®. Six to twelve of the lowest vectors of the reciprocal |attice were taken into account,

and the four lowest eigenmodes are plotted. The three specia points in Fig. 3(b), I', X, and M,

correspond to k; =0, k :Qéx and k ; :E(éx +éy), respectively. The three specia pointsin
a a
, 2n . 27 |~ .
Fig. 4(b), I, X, and J, correspondto k , =0, k, :Tey and k =3—(ex +\/§ey).
a a

For the TE case, the agreement between the quasistatic and the PBGSS calculations is even
better than for the TM case. This is because the interactions of the waves are determined by the

_2ma’ | 2 _2n .
small parameters a, = A (with A~b“) for the TE case and a;, = (with k ~1/b)

In(xa)

for the TM case. For the samevaue of a/b, a;. ismuch smaler than a;,, . Thusthe quasistatic

theory approximates the dispersion characteristics for the TE case much better than those for the

TM case with the sasmevalueof a/b.

V. CONCLUSIONS AND DISCUSSIONS
We have presented a self-consistent technique for calculating the dispersion characteristicsin

two-dimensiona photonic band gap structures representing arrays of perfectly conducting rods.
The technique is applicable for the structures with rod radius small compared to the distance
between them and to the wavelength. First, we described the field in a periodic structure as a set
of plane waves with wave numbers satisfying Bloch’s theorem. Then we expressed self-
consistently the induced current and charge distributions on the rods in terms of the
electromagnetic wave field. We showed that these currents lead to the interaction between the
plane waves in the structure, which is different for the TM and TE waves and affects the shape of
the dispersion characteristics. Results were found in agreement with the dispersion
characteristics previously calculated by the finite-difference PBGSS code®.

Although the effectiveness of the self-consistent quasistatic approach has been demonstrated
only with ideal 2D metallic PBG structures, the technique may be generalized to treat 2D and 3D
dielectric lattices and dielectric-metallic hybrids. This will be an important area for future
investigations.

14



ACKNOWLEDGEMENTS
The authors wish to thank Prof. Michael Petelin (IAP RAS) for his inspiring ideas, and Dr.

Michael Shapiro and Dr. Richard Temkin for useful discussions. We also thank Dr. Mark Hess
for proofreading the manuscript. This research was supported in part by the Innovative Vacuum
Electronics MURI Program, in part by the Department of Energy, High Energy Physics Division,
and in part by Tech-X Corporation.

15



REFERENCES
1. E.Yablonovitch, T.J.Gmitter, and K.M.Leung, Phys. Rev. Lett. 67, 2295 (1991).

2. J.D.Joannopoulos, R.D.Meade, and J.N.Winn, Photonic Crystals: Molding the Flow of Light
(Princeton Univ. Press, Princeton, 1995).

3. Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, and E.L. Thomas, J. of Lightwave
Technology 17, 2039 (1999).

4. D.R.Smith, S.Schultz, N.Kroll, M. Sigalas, K.M. Ho, and C.M. Soukoulis, Appl. Phys. Lett.
65, 645 (1994).

5.F-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, IEEE Trans. MTT 48, 2092 (1999).

6. M.A. Shapiro, W.J. Brown, |. Mastovsky, J.R. Sirigiri, and R.J. Temkin, Phys. Rev. Special
Topics: Accelerators and Beams 4, 042001 (2001).

7. J. R. Sirigiri, K.E. Kreischer, J. Machuzak, |. Mastovsky, M. A. Shapiro, and R. J. Temkin,
Phys. Rev. Lett. 86, 5628 (2001).

8. E.I. Smirnova, C.Chen, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, J. Appl. Phys. 91(3), 960
(2002).

9. N.A. Nicorovici, R.C. McPhedran, and L.C. Botten, Phys. Rev. B, 52(1), 1135 (1995).

10. T. Suzuki and P.K.L. Yu, Phys. Rev. B 57(4), 2229 (1998).

11. S.G. Johnson, P.R. Villeneuve, S.Fan, and J.D. Joannopoulos, Phys. Rev. B 62(12), 8212
(2000).

12. M. Qiu, S. He, Phys. Rev. B 61(19), 12871 (2000).

13. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New
York, 1976).

14. O. Madelung, Introduction to Solid State Theory (London, Springer, 1978).

15. L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of Continuous Media
(Pergamon Press, Oxford, 1984).

16



Fig. 1: Schematic of PBG structuresrepresenting (a) a squarelattice and (b) a triangular

lattice of perfectly conducting cylinderswith radius a and spacing b.
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Fig. 2: lllustration of the near- and far-field regionsin the quasistatic approximation.
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Fig. 3: Dispersion characteristicsin the square lattice as calculated with the PBGSS code
(solid curves) and the quasistatic approximation (dots) for (a) TM modeswith a/b =0.05

and (b) TE modeswith a/b=0.1.
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Fig. 4: Dispersion characteristicsin thetriangular lattice as calculated with the PBGSS

code (solid curves) and t
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