27 research outputs found

    A relative localisation system of a mobile robot

    No full text

    Abnormal features of Macoma balthica (Bivalvia) in the Baltic Sea: alerting symptoms of environmental adversity?

    No full text
    Recent studies of the Baltic clam Macoma balthica (L.) from the southern Baltic (the Gulf of Gdansk) have revealed striking morphological, histological and cytogenetic features. Strong deformation of the shell, including elongation of the posterior end and the appearance of an easily visible flexure in this part, has been recorded. The population contribution of the deformed blunt shelled ("irregular") clams ranged from 0% to 65% and tended to increase with depth. The morphologically "irregular" clams had higher accumulated tissue concentrations of trace metals (As, Ag, Cd, Pb, Cu and Zn), indicating a different metal handling ability. Adverse conditions in deeper water regions of the Gulf (e.g. hypoxia, hydrogen sulphide, elevated bioavailability of contaminants) have been suggested as inducers of the phenotypical changes (morphological deformation) in part of the population and, in parallel, of the specific physiological adaptations that result in higher metal accumulation in the "irregular" clams. Cytogenetic and histological analyses showed the presence of tumours in gill cells and digestive system of the affected clams, the prevalence of disseminated neoplasia ranging from 0% to 94% depending on the site. The disease was manifested by a modified karyotype (i.e. an abnormal number and morphology of chromosomes), a higher activity of nucleolar organizer regions (AgNORs), and tissue lesions (enlarged cells, actively proliferative with pleomorphic nuclei). Bottom sediments showed acute toxi [KEYWORDS: Abnormal features; Macoma balthica; Southern Baltic sea; Environmental adversity]

    Y.: Modeled and observed impacts of the 1997–1998 El Niño on nitrate and new production in the equatorial

    No full text
    Abstract. The impact of the strong 1997-1998 El Niño event on nitrate distribution and new production in the equatorial Pacific is investigated, using a combination of satellite and in situ observations, and an ocean circulationbiogeochemical model. The general circulation model is forced with realistic wind stresses deduced from ERS-1 and ERS-2 scatterometers over the 1993-1998 period. Its outputs are used to drive a biogeochemical model where biology is parameterized as a nitrate sink. We first show that the models capture the essential circulation and biogeochemical equatorial features along with their temporal evolution during the 1997-1998 event, although the modeled variability seems underestimated. In particular, the model fails to reproduce unusual bloom conditions. This is attributed to the simplicity of the biological model. An analysis of the physical mechanisms responsible for the dramatic decrease of the biological equatorial production during El Niño is then proposed. During the growth phase (November 1996 through June 1997), nitrate-poor waters of the western Pacific are advected eastward, and the vertical supply of nitrate is reduced due to nitracline deepening. These processes result in the invasion of the equatorial Pacific by nitrate-poor waters during the mature phase (November 1997 through January 1998). At that time, the central Pacific is nitrate limited and experiences warm pool oligotrophic conditions. As a result, the modeled new production over the equatorial Pacific drops by 40% compared to the mean 1993-1996 values. Then, while El Niño conditions are still present at the surface, the nitracline shallows over most of the basin in early 1998. Therefore the strengthening of the trade winds in May 1998 efficiently switches on the nitrate vertical supply over a large part of the equatorial Pacific, leading to a rapid return of high biological production conditions. Strong La Niña conditions then develop, resulting in a biologically rich tongue extending as far west as 160°E for several months
    corecore