41 research outputs found

    High-intensity-focused ultrasound in the treatment of primary prostate cancer: the first UK series

    Get PDF
    BACKGROUND: The use of minimally invasive ablative therapies in localised prostate cancer offer potential for a middle ground between active surveillance and radical therapy. METHODS: An analysis of men with organ-confined prostate cancer treated with transrectal whole-gland HIFU (Sonablate 500) between 1 February 2005 and 15 May 2007 was carried out in two centres. Outcome data (side-effects using validated patient questionnaires, biochemical, histology) were evaluated. RESULTS: A total of 172 men were treated under general anaesthetic as day-case procedures with 78% discharged a mean 5 h after treatment. Mean follow-up was 346 days (range 135-759 days). Urethral stricture was significantly lower in those with suprapubic catheter compared with urethral catheters (19.4 vs 40.4%, P = 0.005). Antibiotics were given to 23.8% of patients for presumed urinary tract infection and the rate of epididymitis was 7.6%. Potency was maintained in 70% by 12 months, whereas mild stress urinary incontinence (no pads) was reported in 7.0% (12 out of 172) with a further 0.6% (1 out of 172) requiring pads. There was no rectal toxicity and no recto-urethral fistulae. In all, 78.3% achieved a PSA nadir <= 0.5 mu g ml(-1) at 12 months, with 57.8% achieving <= 0.2 mu g ml(-1). Then, 8 out of 13 were retreated with HIFU, one had salvage external beam radiotherapy and four chose active surveillance for small-volume low-risk disease. Overall, there was no evidence of disease (PSA <0.5 mu g ml(-1) or negative biopsy if nadir not achieved) after one HIFU session in 92.4% ( 159 out of 172) of patients. CONCLUSION: HIFU is a minimally invasive, day-case ablative technique that can achieve good biochemical outcomes in the short term with minimal urinary incontinence and acceptable levels of erectile dysfunction. Long-term outcome needs further evaluation and the inception of an international registry for cases treated using HIFU will significantly aid this health technology assessment. British Journal of Cancer (2009) 101, 19-26. doi: 10.1038/sj.bjc.6605116 www.bjcancer.com Published online 9 June 2009 (C) 2009 Cancer Research U

    MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium

    Get PDF
    Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation

    Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models

    Get PDF
    Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the prometastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy

    Quelle peut être la durée du délai entre le diagnostic et le traitement chirurgical du cancer du rein ? [What may be the waiting time between the diagnosis and surgical treatment of kidney cancer?]

    No full text
    When announcing the diagnosis of renal cell carcinoma, the urologist and the patient can wonder about the waiting time for surgically treating the cancer. This review aimed to investigate the scientific facts to determine the time between the diagnosis of kidney cancer and the achievement of surgically. The natural history of kidney cancer has been the fundament of the therapeutic management. The time between diagnosis and surgical treatment depends on the conditions under which the diagnosis was established. Patients with symptomatic cancer or discovered at metastatic stage had to be treated quickly. In case of incidental diagnosis, evaluation of tumors has resulted in the selection of patients who can wait several months between diagnosis and surgical treatment of kidney cancer on the condition watchful waiting. The modalities of this assessment, radiological and anatomopathological, must be validated by further studies

    Quo vadis multiscale modeling in reaction engineering? – A perspective

    Get PDF
    This work reports the results of a perspective workshop held in summer 2021 discussing the current status and future needs for multiscale modeling in reaction engineering. This research topic is one of the most challenging and likewise most interdisciplinary in the chemical engineering community, today. Although it is progressing fast in terms of methods development, it is only slowly applied by most reaction engineers. Therefore, this perspective is aimed to promote this field and facilitate research and a common understanding. It involves the following areas: (1) reactors and cells with surface changes focusing on Density Functional Theory and Monte-Carlo simulations; (2) hierarchically-based microkinetic analysis of heterogeneous catalytic processes including structure sensitivity, microkinetic mechanism development, and parameter estimation; (3) coupling first-principles kinetic models and CFD simulations of catalytic reactors covering chemistry acceleration strategies and surrogate models; and finally (4) catalyst-reactor-plant systems with details on linking CFD with plant simulations, respectively. It therefore highlights recent achievements, challenges, and future needs for fueling this urgent research topic in reaction engineering

    Quo vadis multiscale modeling in reaction engineering? – A perspective

    No full text
    This work reports the results of a perspective workshop held in summer 2021 discussing the current status and future needs for multiscale modeling in reaction engineering. This research topic is one of the most challenging and likewise most interdisciplinary in the chemical engineering community, today. Although it is progressing fast in terms of methods development, it is only slowly applied by most reaction engineers. Therefore, this perspective is aimed to promote this field and facilitate research and a common understanding. It involves the following areas: (1) reactors and cells with surface changes focusing on Density Functional Theory and Monte-Carlo simulations; (2) hierarchically-based microkinetic analysis of heterogeneous catalytic processes including structure sensitivity, microkinetic mechanism development, and parameter estimation; (3) coupling first-principles kinetic models and CFD simulations of catalytic reactors covering chemistry acceleration strategies and surrogate models; and finally (4) catalyst-reactor-plant systems with details on linking CFD with plant simulations, respectively. It therefore highlights recent achievements, challenges, and future needs for fueling this urgent research topic in reaction engineering
    corecore