71,932 research outputs found

    An Incomes Policy for the Professions: the Dutch Experience

    Get PDF
    In 1951 the United States began moving toward an incomes policy, an attempt to end postwar wage and price inflation by linking changes in these prices to gains in productivity. Other countries later followed suit; some countries had already adopted wage and price control policies. The Netherlands moved toward an incomes policy immediately after World War II. Initially, the Dutch program involved wages only, but in the 1970s it became an accepted principle that private professional income should be comparable with the salaries of government officials and civil servants with comparable training and responsibilities. In the Netherlands (as in the United States and, before medicine was socialized, the United Kingdom) health professionals operate on a fee-for-service basis and their incomes escalated as a result of both inflation and monopoly power. So they were subjected to the incomes policy. The policy's effectiveness in curbing income escalation cannot be determined with certainty—reliable data are lacking. However, the evidence indicates that the policy failed to achieve its original purpose.Incomes policy, Netherlands

    First Detection of Molecular Gas in the Shells of CenA

    Get PDF
    Shells are faint arc-like stellar structures, which have been observed around early type galaxies and are thought to be the result of an interaction. HI gas has recently been detected in shells, a surprising result in view of the theoretical predictions that most of the gas should decouple from stars and fall into the nucleus in such interactions. Here we report the first detection of molecular gas (CO) in shells, found 15kpc away from the center of NGC5128 (CenA), a giant elliptical galaxy that harbors an active nucleus (AGN). The ratio between CO and HI emission in the shells is the same as that found in the central regions, which is unexpected given the metallicity gradient usually observed in galaxies. We propose that the dynamics of the gas can be understood within the standard picture of shell formation if one takes into account that the interstellar medium is clumpy and hence not highly dissipative. The observed metal enrichment could be due to star formation induced by the AGN jet in the shells. Furthermore our observations provide evidence that molecular gas in mergers may be spread out far from the nuclear regions.Comment: Accepted for publication in Astronomy & Astrophysics Letters, (Vol. 356), 4 pages + 1 color figur

    Hansenula polymorpha: An attractive model organism for molecular studies of peroxisome biogenesis and function

    Get PDF
    In wild-type Hansenula polymorpha the proliferation of peroxisomes is induced by various unconventional carbon- and nitrogen sources. Highest induction levels, up to 80% of the cytoplasmic volume, are observed in cells grown in methanol-limited chemostat cultures. Based on our accumulated experience, we are now able to precisely adjust both the level of peroxisome induction as well as their protein composition by specific adaptations in growth conditions. During the last few years a series of peroxisome-deficient (per) mutants of H. polymorpha have been isolated and characterized. Phenotypically these mutants are characterized by the fact that they are not able to grow on methanol. Three mutant phenotypes were defined on the basis of morphological criteria, namely: (a) mutants completely lacking peroxisomes (Per-; 13 complementation groups); (b) mutants containing few small peroxisomes which are partly impaired in the peroxisomal import of matrix proteins (Pim-; five complementation groups); and (c) mutants with aberrations in the peroxisomal substructure (Pss-; two complementation groups). In addition, several conditional Per-, Pim- and Pss- mutants have been obtained. In all cases the mutant phenotype was shown to be caused by a recessive mutation in one gene. However, we observed that different mutations in one gene may cause different morphological mutant phenotypes. A detailed genetic analysis revealed that several PER genes, essential for peroxisome biogenesis, are tightly linked and organized in a hierarchical fashion. The use of both constitual and conditional per mutants in current and future studies of the molecular mechanisms controlling peroxisome biogenesis and function is discussed.

    Multinucleon Mechanisms in (γ\gamma,N) and (γ\gamma,NN) Reactions

    Full text link
    The similarities in the experimental indications for multinucleon mechanisms in (γ,p)(\gamma,p) and (e,ep)(e,e'p) processes are pointed out. For both types of reactions, the substantial role of two-nucleon emission processes for transitions to high excitation energies in the residual nucleus is stressed. A microscopic model for the calculation of the two-body knockout contributions to the inclusive (γ,N)(\gamma,N) reaction is presented. It is based on an unfactorized formalism for the calculation of electromagnetically induced two-nucleon emission cross sections. The model is shown to yield a reasonable description of the overall behaviour of the 12^{12}C(γ,p)(\gamma,p) and 12^{12}C(γ,n)(\gamma,n) data at high excitation energies in the residual nucleus. In the calculations effects from non-resonant and resonant pion exchange currents are included. Photoabsorption on these currents are predicted to produce the major contributions to the exclusive 16^{16}O(γ,n0)15(\gamma,n_0)^{15}O process at photonenergies above the pion threshold. Double differential cross sections for photon induced pppp and pnpn emission from 16^{16}O are calculated and compared with the data.Comment: 18 pages, Revtex 3.0, 13 figures (available upon request), SSF93-10-0

    A deep learning approach to diabetic blood glucose prediction

    Full text link
    We consider the question of 30-minute prediction of blood glucose levels measured by continuous glucose monitoring devices, using clinical data. While most studies of this nature deal with one patient at a time, we take a certain percentage of patients in the data set as training data, and test on the remainder of the patients; i.e., the machine need not re-calibrate on the new patients in the data set. We demonstrate how deep learning can outperform shallow networks in this example. One novelty is to demonstrate how a parsimonious deep representation can be constructed using domain knowledge

    Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    Get PDF
    Aims. We model the present-day population of 'classical' low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. Methods. We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results. We find a population of ~2.1 x 10^3 LMXBs with neutron star accretors. Of these about 15 - 40 are expected to be persistent (depending on model assumptions), with luminosities higher than 10^35 erg s^-1. About 7 - 20 transient sources are expected to be in outburst at any given time. Within a factor of two these numbers are consistent with the observed population of bright LMXBs in the Bulge. This gives credence to our prediction of the existence of a population of ~1.6 x 10^3 LMXBs with low donor masses that have gone through the period minimum, and have present-day mass transfer rates below 10^-11 Msun yr^-1. Conclusions. Even though the observed population of hydrogen-rich LMXBs in the Bulge is larger than the observed population of (hydrogen-deficient) UCXBs, the latter have a higher formation rate. While UCXBs may dominate the total LMXB population at the present, the majority would be very faint, or may have become detached and produced millisecond radio pulsars. In that case UCXBs would contribute significantly more to the formation of millisecond radio pulsars than hydrogen-rich LMXBs. [abridged]Comment: 8 pages, 10 figures. Accepted for publication in Astronomy and Astrophysics. v2: minor language correction

    The exclusive (e,e'p) reaction at high missing momenta

    Get PDF
    The reduced (e,e'p) cross section is calculated for kinematics that probe high missing momenta. The final-state interaction is handled within a non-relativistic many-body framework. One- and two-body nuclear currents are included. Electron distortion effects are treated in an exact distorted wave calculation. It is shown that at high missing momenta the calculated (e,e'p) cross sections exhibit a pronounced sensitivity to ground-state correlations of the RPA type and two-body currents. The role of these mechanisms is found to be relatively small at low missing momenta.Comment: 15 pages in REVtex with embedded psfigure

    Universality check of Abelian Monopoles

    Full text link
    We study the Abelian projected SU(2) lattice gauge theory after gauge fixing to the maximally Abelian gauge (MAG). In order to check the universality of the Abelian dominance we employ the tadpole improved tree level (TI) action. We show that the density of monopoles in the largest cluster (the IR component) is finite in the continuum limit which is approximated already at relatively large lattice spacing. The value itself is smaller than in the case of Wilson action. We present results for the ratio of the Abelian to non-Abelian string tension for both Wilson and TI actions for a number of lattice spacings in the range 0.06 fm < a < 0.35 fm. These results show that the ratio is between 0.9 and 0.95 for all considered values of lattice couplings and both actions. We compare the properties of the monopole clusters in two gauges - in MAG and in the Laplacian Abelian gauge (LAG). Whereas in MAG the infrared component of the monopole density shows a good convergence to the continuum limit, we find that in LAG it is even not clear whether a finite limit exists.Comment: 18 pages, 11 figure

    Large cone angle magnetization precession of an individual nanomagnet with dc electrical detection

    Get PDF
    We demonstrate on-chip resonant driving of large cone-angle magnetization precession of an individual nanoscale permalloy element. Strong driving is realized by locating the element in close proximity to the shorted end of a coplanar strip waveguide, which generates a microwave magnetic field. We used a microwave frequency modulation method to accurately measure resonant changes of the dc anisotropic magnetoresistance. Precession cone angles up to 909^{0} are determined with better than one degree of resolution. The resonance peak shape is well-described by the Landau-Lifshitz-Gilbert equation

    Control of recollision wave packets for molecular orbital tomography using short laser pulses

    Full text link
    The tomographic imaging of arbitrary molecular orbitals via high-order harmonic generation requires that electrons recollide from one direction only. Within a semi-classical model, we show that extremely short phase-stabilized laser pulses offer control over the momentum distribution of the returning electrons. By adjusting the carrier-envelope phase, recollisions can be forced to occur from mainly one side, while retaining a broad energy spectrum. The signatures of the semi-classical distributions are observed in harmonic spectra obtained by numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 8 pages, 4 figures; v2: Added some extra clarifications; v3: minor grammatical change
    corecore