79,205 research outputs found

    Evolving IT management frameworks towards a sustainable future

    Get PDF
    Information Technology (IT) Management Frameworks are a fundamental tool used by IT professionals to efficiently manage IT resources and are globally applied to IT service delivery and management. Sustainability is a recent notion that describes the need for economic, environmental and social development with- out compromising the ability of future generations to meet their own needs; this applies to businesses as well as society in general. Unfortunately, IT Management Frameworks do not take sustainability into account. To the practitioner this paper demonstrates sustainability integration thereby allowing CIOs and IT managers to improve the sustainability of their organisation. To the researcher this paper argues that sustainability concerns need to be provided to IT Management through its integration into the mainstream of IT Management Frameworks. This is demonstrated through the high-level integration of sustainability in Six Sigma, C OBI T, ITIL and PRINCE2

    Controllability and controller-observer design for a class of linear time-varying systems

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s10852-012-9212-6"In this paper a class of linear time-varying control systems is considered. The time variation consists of a scalar time-varying coefficient multiplying the state matrix of an otherwise time-invariant system. Under very weak assumptions of this coefficient, we show that the controllability can be assessed by an algebraic rank condition, Kalman canonical decomposition is possible, and we give a method for designing a linear state-feedback controller and Luenberger observer

    Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    Get PDF
    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios

    T-Cell Subsets Predict Mortality in Malnourished Zambian Adults Initiating Antiretroviral Therapy.

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedTo estimate the prognostic value of T-cell subsets in Zambian patients initiating antiretroviral therapy (ART), and to assess the impact of a nutritional intervention on T-cell subsets.This work was supported by European and Developing Countries Clinical Trials Partnership grant # IP.2009.33011.004; trial foods were prepared and supplied by Nutriset, Malauney, Franc

    Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change

    Get PDF
    We report a monolithically integrated InGaAsP DBR ridge waveguide laser that uses the quantum-confined Stark effect (QCSE) to achieve fast tuning response. The laser incorporates three sections: a forward-biased gain section, a reverse-biased phase section, and a reverse-biased DBR tuning section. The laser behavior is modeled using transmission matrix equations and tuning over similar to 8 nm is predicted. Devices were fabricated using post-growth shallow ion implantation to reduce the loss in the phase and DBR sections by quantum well intermixing. The lasing wavelength was measured while varying the reverse bias of the phase and DBR sections in the range 0 V to < - 2.5 V. Timing was noncontinuous over a similar to 7-nm-wavelength range, with a side-mode suppression ratio of similar to 20 dB. Coupled cavity effects due to the fabrication method used introduced discontinuities in tuning. The frequency modulation (FM) response was measured to be uniform within 2 dB over the frequency range 10 MHz to 10 GHz, indicating that tuning times of 100 ps are possible

    Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)

    Get PDF
    Experimental results are reported on an optical frequency synthesizer for use in dynamic dense wavelength-division-multiplexing networks, based on a tuneable laser in an optical injection phase-locked loop for rapid wavelength locking. The source combines high stability (50 dB), narrow linewidth (10 MHz), and fast wavelength switching (<10 ns)
    corecore