3,634 research outputs found
Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares
We investigated the magnetic properties of two isostructural Ni(II) metal
complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form
almost perfect regular squares. Magnetic coupling and anisotropy of single
crystals were examined by magnetization measurements and in particular by
high-field torque magnetometry at low temperatures. The data were analyzed in
terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both
compounds, we found a weak intramolecular ferromagnetic coupling of the four
Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The
coupling strengths are roughly identical for both compounds, whereas the
zero-field-splitting parameters are significantly different. Possible reasons
for this observation are discussed.Comment: 7 pages, 7 figure
Electron Spectroscopy and Density-Functional Study of "Ferric Wheel" Molecules
The Li-centered "ferric wheel" molecules with six oxo-bridged iron atoms form
molecular crystals. We probed their electronic structure by X-ray photoelectron
(XPS) and soft X-ray emission spectroscopy (XES), having calculated in parallel
the electronic structure of a single "ferric wheel" molecule from
first-principles by tools of the density-functional theory, using,
specifically, the Siesta method. The Fe local moments were found to be 4 mu_B,
irrespective of their mutual orientation. Neighbouring atoms, primarily oxygen,
exhibit a noticeable magnetic polarization, yielding effective spin S=5/2 per
iron atom, that can get inverted as a "rigid" one in magnetic transitions.
Corresponding energy preferences can be mapped onto the Heisenberg model with
effective exchange parameter J of about -80 K.Comment: 8 pages with 3 embedded postscript figures; uses elsart.cls;
contribution at the E-MRS 2003 Spring Meeting (Strasbourg, June 2003
Assessment of sensor performance
There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges.
Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems
Inelastic neutron scattering study and Hubbard model description of the antiferromagnetic tetrahedral molecule Ni4Mo12
The tetrameric Ni(II) spin cluster Ni4Mo12 has been studied by INS. The data
were analyzed extensively in terms of a very general spin Hamiltonian, which
includes antiferromagnetic Heisenberg interactions, biquadratic 2-spin and
3-spin interactions, a single-ion magnetic anisotropy, and Dzyaloshinsky-Moriya
interactions. Some of the experimentally observed features in the INS spectra
could be reproduced, however, one feature at 1.65 meV resisted all efforts.
This supports the conclusion that the spin Hamiltonian approach is not adequate
to describe the magnetism in Ni4Mo12. The isotropic terms in the spin
Hamiltonian can be obtained in a strong-coupling expansion of the Hubbard model
at half-filling. Therefore detailed theoretical studies of the Hubbard model
were undertaken, using analytical as well as numerical techniques. We carefully
analyzed its abilities and restrictions in applications to molecular spin
clusters. As a main result it was found that the Hubbard model is also unable
to appropriately explain the magnetism in Ni4Mo12. Extensions of the model are
also discussed.Comment: 12 pages, 12 figure
Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry
For powder samples of polynuclear metal complexes the dependence of the
inelastic neutron scattering intensity on the momentum transfer Q is known to
be described by a combination of so called interference terms. They reflect the
interplay between the geometrical structure of the compound and the spatial
properties of the wave functions involved in the transition. In this work, it
is shown that the Q-dependence is strongly interrelated with the molecular
symmetry of molecular nanomagnets, and, if the molecular symmetry is high
enough, is actually completely determined by it. A general formalism connecting
spatial symmetry and interference terms is developed. The arguments are
detailed for cyclic spin clusters, as experimentally realized by e.g. the
octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX
A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently
one of the most widely used instruments for observing exoplanetary atmospheres,
especially with the use of the spatial scanning technique. An increasing number
of exoplanets have been studied using this technique as it enables the
observation of bright targets without saturating the sensitive detectors. In
this work we present a new pipeline for analyzing the data obtained with the
spatial scanning technique, starting from the raw data provided by the
instrument. In addition to commonly used correction techniques, we take into
account the geometric distortions of the instrument, whose impact may become
important when combined to the scanning process. Our approach can improve the
photometric precision for existing data and also push further the limits of the
spatial scanning technique, as it allows the analysis of even longer spatial
scans. As an application of our method and pipeline, we present the results
from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We
calculate the transit depth per wavelength channel with an average relative
uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully
Bayesian spectral retrieval code, which confirms the presence of water vapor
and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits
our ability to disentangle the degeneracies between the fitted atmospheric
parameters. Additional data over a broader spectral range are needed to address
this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap
Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds
In this paper we investigate equivariant Morita theory for algebras with
momentum maps and compute the equivariant Picard groupoid in terms of the
Picard groupoid explicitly. We consider three types of Morita theory:
ring-theoretic equivalence, *-equivalence and strong equivalence. Then we apply
these general considerations to star product algebras over symplectic manifolds
with a Lie algebra symmetry. We obtain the full classification up to
equivariant Morita equivalence.Comment: 28 pages. Minor update, fixed typos
- …