3,634 research outputs found

    Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares

    Full text link
    We investigated the magnetic properties of two isostructural Ni(II) metal complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form almost perfect regular squares. Magnetic coupling and anisotropy of single crystals were examined by magnetization measurements and in particular by high-field torque magnetometry at low temperatures. The data were analyzed in terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both compounds, we found a weak intramolecular ferromagnetic coupling of the four Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The coupling strengths are roughly identical for both compounds, whereas the zero-field-splitting parameters are significantly different. Possible reasons for this observation are discussed.Comment: 7 pages, 7 figure

    Electron Spectroscopy and Density-Functional Study of "Ferric Wheel" Molecules

    Full text link
    The Li-centered "ferric wheel" molecules with six oxo-bridged iron atoms form molecular crystals. We probed their electronic structure by X-ray photoelectron (XPS) and soft X-ray emission spectroscopy (XES), having calculated in parallel the electronic structure of a single "ferric wheel" molecule from first-principles by tools of the density-functional theory, using, specifically, the Siesta method. The Fe local moments were found to be 4 mu_B, irrespective of their mutual orientation. Neighbouring atoms, primarily oxygen, exhibit a noticeable magnetic polarization, yielding effective spin S=5/2 per iron atom, that can get inverted as a "rigid" one in magnetic transitions. Corresponding energy preferences can be mapped onto the Heisenberg model with effective exchange parameter J of about -80 K.Comment: 8 pages with 3 embedded postscript figures; uses elsart.cls; contribution at the E-MRS 2003 Spring Meeting (Strasbourg, June 2003

    Assessment of sensor performance

    Get PDF
    There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems

    Inelastic neutron scattering study and Hubbard model description of the antiferromagnetic tetrahedral molecule Ni4Mo12

    Full text link
    The tetrameric Ni(II) spin cluster Ni4Mo12 has been studied by INS. The data were analyzed extensively in terms of a very general spin Hamiltonian, which includes antiferromagnetic Heisenberg interactions, biquadratic 2-spin and 3-spin interactions, a single-ion magnetic anisotropy, and Dzyaloshinsky-Moriya interactions. Some of the experimentally observed features in the INS spectra could be reproduced, however, one feature at 1.65 meV resisted all efforts. This supports the conclusion that the spin Hamiltonian approach is not adequate to describe the magnetism in Ni4Mo12. The isotropic terms in the spin Hamiltonian can be obtained in a strong-coupling expansion of the Hubbard model at half-filling. Therefore detailed theoretical studies of the Hubbard model were undertaken, using analytical as well as numerical techniques. We carefully analyzed its abilities and restrictions in applications to molecular spin clusters. As a main result it was found that the Hubbard model is also unable to appropriately explain the magnetism in Ni4Mo12. Extensions of the model are also discussed.Comment: 12 pages, 12 figure

    Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    Full text link
    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX

    A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b

    Get PDF
    The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently one of the most widely used instruments for observing exoplanetary atmospheres, especially with the use of the spatial scanning technique. An increasing number of exoplanets have been studied using this technique as it enables the observation of bright targets without saturating the sensitive detectors. In this work we present a new pipeline for analyzing the data obtained with the spatial scanning technique, starting from the raw data provided by the instrument. In addition to commonly used correction techniques, we take into account the geometric distortions of the instrument, whose impact may become important when combined to the scanning process. Our approach can improve the photometric precision for existing data and also push further the limits of the spatial scanning technique, as it allows the analysis of even longer spatial scans. As an application of our method and pipeline, we present the results from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We calculate the transit depth per wavelength channel with an average relative uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully Bayesian spectral retrieval code, which confirms the presence of water vapor and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits our ability to disentangle the degeneracies between the fitted atmospheric parameters. Additional data over a broader spectral range are needed to address this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap

    Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds

    Full text link
    In this paper we investigate equivariant Morita theory for algebras with momentum maps and compute the equivariant Picard groupoid in terms of the Picard groupoid explicitly. We consider three types of Morita theory: ring-theoretic equivalence, *-equivalence and strong equivalence. Then we apply these general considerations to star product algebras over symplectic manifolds with a Lie algebra symmetry. We obtain the full classification up to equivariant Morita equivalence.Comment: 28 pages. Minor update, fixed typos
    corecore